Blog

Confinamento de Corredores em Data Centers

Introdução ao confinamento

Em meu artigo anterior, mostrei a importância de uma boa gestão do fluxo de ar na refrigeração dos computadores de um data center. É uma boa ideia ler aquele artigo antes deste, pois lá explico os três principais problemas na gestão do fluxo de ar: ar frio desviado, recirculação do ar quente e pressão negativa. Neste artigo, vamos rever esses problemas e apresentar as soluções de confinamento de corredores, que complementam as práticas mostradas no artigo citado.

Vamos recordar esses principais problemas com a seguinte figura:

Problemas na gestão do fluxo de ar em data centers

É necessário evitarmos esses problemas com medidas tais como:

  • Fechar as posições de rack não utilizadas com tampas cegas
  • Não deixar espaços entre os racks da fileira
  • Selar as passagens de dutos e cabos que atravessam o pleno de fornecimento de ar frio (geralmente, o piso elevado)
  • Não colocar saídas de ar frio em locais que não sejam os corredores frios

Mesmo com todas essas medidas, ainda há locais por onde o ar frio ou o ar quente consegue escapar de seu corredor e acaba ocorrendo a mistura indesejada do ar quente com o frio: pelo topo e pelo final dos corredores, onde indicado pelas setas amarelas na figura abaixo.

É aí que entra a solução do “confinamento de corredores”, visando fechar esses dois locais (topo e final de corredores), evitando a mistura do ar quente com o frio. Podemos confinar o corredor quente ou o frio, usando anteparos sobre os racks e portas ao final dos corredores.

Confinamento do corredor frio

Ao confinar o corredor frio, evitamos que o ar resfriado fornecido pelo CRAC se desvie por qualquer outro lugar. A única maneira de ele retornar ao CRAC é passando através dos computadores instalados nos racks. É claro que precisamos fechar quaisquer outros potenciais “buracos” por onde o ar poderia sair.

Confinamento do corredor frio

Principais características dessa solução:

  • Menos volume de ar frio
  • O resto da sala é quente, o que poderia ser um problema para a instalação de equipamentos “stand alone” (fora de rack ou “de piso”), pois poderiam sobreaquecer
  • Maior uniformidade na temperatura do corredor frio
  • É mais fácil de ser aplicada quando os racks são padronizados

Cuidado para não pressurizar demais o corredor frio, senão o ar acaba se “desviando” por dentro dos computadores, ou seja, passa através deles mesmo não havendo muita necessidade.

Confinamento do corredor quente

Nesta solução, evitamos que o ar quente retorne aos computadores criando um “duto” entre o corredor quente e o retorno do CRAC. Esse retorno pode ser dutado ou através do plenum formado pelo forro. Na figura abaixo, o suprimento de ar frio não precisaria ser feito por sob o piso elevado, poderia também ser feito pelo ambiente.

Confinamento do corredor quente

Principais características dessa solução:

  • Maior volume de ar frio (o restante da sala)
  • O resto da sala é fria, permitindo a instalação de equipamentos “stand alone” sem problema de superaquecimento
  • O corredor quente fica muito quente, potencialmente levando a problemas de saúde ocupacional se alguém precisasse ficar muito tempo ali, pois esse corredor pode facilmente passar dos 40 °C
  • É mais fácil de ser aplicada quando os racks são padronizados

Rack chaminé

Esta é uma outra forma de confinamento do corredor quente, só que sem a criação do corredor quente em si. Cada rack confina seu próprio ar quente, possuindo portas traseiras seladas e uma chaminé que permite o retorno do ar quente ao CRAC através de dutos ou do plenum superior.

Rack chaminé

Principais características dessa solução:

  • Não tem corredor quente, evitando problemas de salubridade para quem precisar ficar atrás dos racks por muito tempo
  • O resto da sala é fria
  • Layout mais flexível, não necessitando a criação de corredores paralelos
  • Exige racks apropriados para tal solução, mas não precisam ser todos iguais

Conclusão

Existem diversas alternativas para a implementação do confinamento de corredores. Cada uma delas tem suas características, vantagens e desvantagens. De qualquer forma, implantar o confinamento é melhor do que não fazê-lo, qualquer que seja a solução adotada. Só não podemos descuidar dos demais pontos de atenção com relação à gestão do fluxo de ar, como detalhados no artigo citado no início deste.

Para saber mais, assista meu vídeo sobre confinamento de corredores:

Se achou este post útil, compartilhe, encaminhe a alguém que também possa achá-lo útil. Não deixe de se inscrever em meu canal do YouTube! Participe de meu grupo do Whatsapp e receba as novidades sobre meus artigos, vídeos e cursos. E curta minha página no Facebook!

Até a próxima!

Marcelo Barboza, RCDD, DCDC, ATS, DCS Design, Assessor CEEDA
Clarity Treinamentos
marcelo@claritytreinamentos.com.br

Sobre o autor
Marcelo Barboza, instrutor da área de cabeamento estruturado desde 2001, formado pelo Mackenzie, possui mais de 30 anos de experiência em TI, membro da BICSI e da comissão de estudos sobre cabeamento estruturado da ABNT/COBEI, certificado pela BICSI (RCDD e DCDC), Uptime Institute (ATS) e DCPro (Data Center Specialist – Design). Instrutor autorizado para cursos selecionados da DCProfessional, Fluke Networks, Panduit e Clarity Treinamentos. Assessor para o selo de eficiência para data centers – CEEDA.

Fluxo do Ar de Refrigeração em Data Centers

Introdução

Um data center é um ambiente de missão crítica bastante complexo, e que apresenta diversas particularidades. Neste artigo, trataremos sobre um problema bastante específico a esse tipo de ambiente: fluxo de ar para a refrigeração dos equipamentos de TI.

Todo equipamento de TI (como servidores, dispositivos de armazenamento e de comunicação), que tratarei neste artigo simplesmente por “computador”, precisa ser refrigerado, pois durante sua operação ele esquenta. Se não removermos o excesso de calor, o computador pode falhar ou desligar automaticamente, causando prejuízos aos serviços prestados pelo data center.

Para a refrigeração dos computadores, os data centers contam com máquinas de ar-condicionado de diferentes tecnologias e capacidades. Não vamos entrar em detalhes, aqui, sobre as máquinas de ar-condicionado (CRAC – Computer Room Air Conditioner). Vamos, sim, explorar alguns problemas que acontecem entre o ar-condicionado e os computadores. Pois há um fluxo de ar entre esses dois tipos de máquinas: o ar frio fornecido pelo CRAC e que deve ser captado pelo computador; e o ar aquecido pelo computador, que deve retornar ao CRAC para ser resfriado novamente.

Idealmente, é um ciclo fechado, como podemos ver na figura abaixo:

Mas o mundo real está longe da perfeição, e há alguns problemas que afetam esse fluxo, afetando, consequentemente, a eficiência do sistema de refrigeração e, por conseguinte, aumentando seu custo, já que levará a um aumento no consumo de energia por parte dos CRACs.

Podemos dividir esses em três diferentes tipos:

  1. Ar frio desviado
  2. Recirculação do ar quente
  3. Pressão negativa

Ar frio desviado

Neste caso, nem todo o ar resfriado pelo CRAC chega até os computadores. Parte dele se desvia de seu destino e acaba se misturando com o ar quente que retorna ao CRAC, como podemos ver no diagrama abaixo:

Quando isso acontece, menos ar resfriado chega aos computadores, além de diminuir a temperatura do ar que retorna ao CRAC. Uma das consequências é o aumento da temperatura dos computadores, já que não chega ar suficiente para resfriá-los. Para compensar isto, precisamos aumentar a potência das ventoinhas do CRAC, aumentando também seu consumo elétrico.

Outra consequência é a diminuição da temperatura do ar de retorno ao CARC. Como o ar desviado se mistura a esse retorno, sua temperatura acaba ficando inferior àquela do ar que sai dos computadores. Isso diminui a eficiência do CRAC e “engana” o sistema, pois, como o ar chega mais frio, “achamos” que está tudo bem quando, na verdade, poderia até estar ocorrendo algum “hot spot” no data center e nem ficamos sabendo!

O ar frio é desviado quando o fornecemos em locais onde os computadores não poderão captá-lo. Por exemplo, quando colocamos placas de piso perfuradas em locais que não o “corredor frio”, quando deixamos abertos os furos de passagem de cabos atrás dos racks, ou quando o piso elevado não está bem alinhado. Também pode ocorrer quando o ar frio escapa por cima ou pelas laterais do corredor frio sem ser captado pelos computadores.

Piso desalinhado

Furo para passagem de cabos por onde o ar é desviado
Solução para fechamento do furo para passagem de cabos

Este vídeo explica com mais detalhes o ar desviado:

Recirculação do ar quente

Idealmente, todo o ar quente que sai dos computadores deveria retornar ao CRAC. Mas isso nem sempre acontece, e parte dele acaba recirculando pelo próprio computador, entrando novamente por sua captação de ar frio. Consequentemente, a temperatura do ar que entra pelo computador acaba aumentando, o que pode provocar sobreaquecimento, levando a desligamento, diminuição de vida útil e falhas. Isso nos obriga a aumentar a potência de resfriamento do CRAC, aumentando também seu consumo elétrico.

Esse ar quente pode retornar para os próprios computadores por dentro, por cima ou pelas laterais dos racks. Para evitar isso, deve haver uma separação total entre o lado de trás do rack (corredor quente) e o lado da frente (corredor frio). E deve-se atentar para não instalar no rack equipamentos que tenham seu fluxo de ar divergente desse padrão.

Uma boa ideia é sempre instalar placas cegas nas posições não usadas dos racks, e não deixar aberturas entre eles.

Exemplo de tampa cega entre posições ocupadas

Aqui e aqui você pode comprar online tampas cegas para seu rack para evitar a recirculação do ar quente.

Este vídeo explica com mais detalhes a recirculação do ar quente:

Pressão negativa

Abaixo do piso elevado, nas proximidades do CRAC downflow, o ar por ele fornecido ainda está com muita velocidade. E ar em velocidade possui menos pressão que ar parado. E, como sabemos, o ar flui de onde tem mais pressão para onde tem menos. Se colocarmos uma placa de piso perfurada muito perto (a menos de 1,8 m) do CRAC, o ar do ambiente será sugado para baixo do piso, pois ali haverá uma “pressão negativa” (menos pressão abaixo do piso do que acima).

Ao ser sugado, o ar ambiente (mais quente) “contaminará” o ar recém resfriado fornecido pelo CRAC, aumentando sua temperatura. Os efeitos serão semelhantes aos do ar quente recirculado: aumento da temperatura do ar fornecido aos computadores. Para compensar, precisamos “esfriar” ainda mais a sala, gastando mais energia.

O ideal é nunca posicionar as placas de piso perfuradas muito perto dos CRACs. Converse com o projetista do sistema de climatização para ver a distância mínima recomendada.

Este vídeo explica um pouco mais sobre a pressão negativa:

Conclusão

Refrigerar o data center e manter a temperatura dos computadores na faixa ideal é muito mais do que simplesmente ter os CRACs corretamente dimensionados, instalados e operacionais. O fluxo de ar é parte integrante do sistema de climatização do data center, e há muitos detalhes que devem ser observados para que os objetivos do sistema sejam alcançados.

Em outro artigo, falo sobre o confinamento dos corredores do data center, que é uma solução que visa melhorar ainda mais o fluxo de ar entre os CRACs e os computadores. Assista ao vídeo a seguir, sobre confinamento de corredores do data center:

Se achou este post útil, compartilhe, encaminhe a alguém que também possa achá-lo útil. Não deixe de se inscrever em meu canal do YouTube! Participe de meu grupo do Whatsapp e receba as novidades sobre meus artigos, vídeos e cursos. E curta minha página no Facebook!

Até a próxima!

Marcelo Barboza, RCDD, DCDC, ATS, DCS Design, Assessor CEEDA
Clarity Treinamentos
marcelo@claritytreinamentos.com.br

Sobre o autor
Marcelo Barboza, instrutor da área de cabeamento estruturado desde 2001, formado pelo Mackenzie, possui mais de 30 anos de experiência em TI, membro da BICSI e da comissão de estudos sobre cabeamento estruturado da ABNT/COBEI, certificado pela BICSI (RCDD e DCDC), Uptime Institute (ATS) e DCPro (Data Center Specialist – Design). Instrutor autorizado para cursos selecionados da DCProfessional, Fluke Networks, Panduit e Clarity Treinamentos. Assessor para o selo de eficiência para data centers – CEEDA.

Conectorização em cabos de par trançado

A “conectorização”, procedimento também conhecido como “terminação” ou “crimpagem”, é o processo de conexão da extremidade um cabo de par trançado a um hardware de conexão. E o hardware de conexão é, por sua vez, um “componente ou combinação de componentes usados para conectar cabos ou elementos do cabo”, conforme a norma NBR 14565, ou seja, é um patch panel, tomada (conector fêmea – jack) ou plugue (conector macho).

Exemplos de hardware de conexão:

Plugue RJ45
Tomada RJ45
Patch Panel RJ45

Em outras palavras, conectorização é o ato de montarmos o cabo UTP (ou cabo blindado) em uma tomada ou plugue RJ45, ou em um patch panel com portas RJ45. Quando não é em conectores do tipo RJ45, é em blocos (ex.: tipo 110) ou em conectores específicos para as categorias 7, 7A ou 8.2 (ex.: Tera e GG-45).

Bloco Tipo 110
Conectores Tera e GG-45

Tecnicamente, o termo correto para o conector RJ45 é “conector modular de oito posições e oito contatos”, ou simplesmente 8P8C. O termo RJ45, onde RJ significa registered jack – tomada registrada, é um tipo de conector padronizado nos EUA para a conexão de redes telefônicas. O conector RJ45 atual (8P8C) para cabeamento estruturado foi baseado nessa tomada padrão.

A conectorização UTP sempre é realizada com algumas ferramentas, como decapadores de cabos, alicates de corte, ferramentas de impacto (punch down), alicates de “crimpe” ou outros tipos de ferramenta para o auxílio na conexão dos fios. As ferramentas exatas devem ser determinadas pelo fabricante do hardware de conexão. Portanto, é sempre necessário obtermos o manual de instalação do produto do fabricante correspondente.

Porém, antes de qualquer conectorização, temos que determinar qual a configuração de terminação (também conhecido como “pinagem”) que usaremos nas tomadas e plugues. A NBR 14565 reconhece duas configurações (T568A e T568B) para as categorias 5e, 6, 6A e 8.1, e mais duas configurações específicas para as categorias 7, 7A e 8.2 (conforme o tipo de conector utilizado, similares ao Tera ou ao GG-45). Qualquer que seja a configuração escolhida, ela deve ser mantida em toda a instalação.

Cometer um erro na manutenção da configuração de terminação em um enlace pode ocasionar erros de transmissão de rede, dependendo do padrão utilizado.

Veja este vídeo que fiz sobre um caso real de lentidão na rede ocasionado por erro de pinagem:

Também é essencial conhecermos o código de cores utilizado nos cabos de par trançado de quatro pares:

Número do parCorT568AT568B
1Branco e azul
Azul
5
4
5
4
2Branco e laranja
Laranja
3
6
1
2
3Branco e verde
Verde
1
2
3
6
4Branco e marrom
Marrom
7
8
7
8
Código de cores das pinagens T568A e T568B

Se algum equipamento requerer uma conexão “crossover” (ou outra qualquer), deve-se realizar a troca de posição dos condutores nos patch cords, e não no enlace permanente.

Cuidado na escolha do hardware de conexão correto para o tipo de cabo de par trançado utilizado. Além de verificar se a categoria do conector é a mesma do cabo, verificar a necessidade por blindagem e se o conector é próprio para condutores sólidos (presentes nos cabos “permanentes” ou “horizontais”) ou flexíveis (presentes nos patch cords).

A preparação para a conectorização inclui a decapagem do cabo de par trançado. A quantidade de cabo a ser decapado depende das instruções específicas do fabricante da solução de cabeamento, mas deve sempre permitir um comprimento mínimo de exposição dos pares. Pares muito expostos (entre o término da capa e a entrada do conector) permitem que eles se dobrem ou tenham seu trançamento alterado, afetando o desempenho do canal.

Neste vídeo, mostro como decapar um cabo U/UTP Cat.6A:

Especial atenção deve ser dada às soluções blindadas. Cabos blindados devem sempre ser conectorizados a hardware de conexão blindado, e o processo de decapagem de um cabo blindado deve permitir a exposição de sua blindagem de forma a permitir seu correto contato com a blindagem do conector.

Após a inserção dos pares nos locais apropriados para terminação, deve-se destrançá-los o mínimo possível, e nunca mais do que 13 mm (para as categorias 5e e superiores), conforme a NBR 14565. Usualmente, quanto maior a categoria da solução, menor o destrançamento permitido. O ponto correto de inserção dos pares no conector, seu encaminhamento por dentro dele, e a forma correta de seu destrançamento devem ser dados pelo fabricante desse conector.

Exemplo de montagem de uma tomada categoria 6 do fabricante Panduit:

Exemplo de montagem de uma tomada categoria 6 do fabricante CommScope:

A tomada apresentada acima (SYSTIMAX MGS400), da Categoria 6 (branca), pode ser adquirida neste link: https://afl.b2w.io/aQ71

Independentemente do modelo de conector utilizado, a conexão dos condutores do cabo ao hardware de conexão deve seguir a técnica IDC (Conexão por deslocamento do isolante – Insulation Displacement Connection). Nessa técnica, os condutores não devem ser previamente decapados, o que, além de consumir tempo, permite a exposição do cobre à oxidação, causando problemas de contato no futuro. A técnica IDC faz com que os condutores sejam “empurrados” (com o auxílio de alguma ferramenta) por uma ranhura metálica, que cortará o isolamento e fará o contato elétrico, sem deixar o cobre exposto. Cuidado, pois os contatos IDC para condutores sólidos são diferentes daqueles para condutores flexíveis, como já ressaltado. Diagrama de uma conexão IDC:

A ferramenta correta a ser utilizada para a conexão final dos condutores no hardware de conexão também deve ser informada por seu fabricante. Se for uma ferramenta de impacto (punch down), deve-se consultar com o fabricante do conector qual a força de impacto e ponteira corretos para o modelo de conector utilizado. Abaixo, exemplo de uma ferramenta de impacto com ponteira para conexão IDC tipo 110 e, logo em seguida, vídeo sobre essa ferramenta:

O punch down da Fluke (modelo D914S, com garantia lifetime) pode ser adquirido como parte do kit IS50, neste link: https://afl.b2w.io/aQ83

Geralmente, será necessária a instalação de algum acessório para acabamento do hardware de conexão, como uma tampa de proteção, moldura, trava ou ícone de identificação.

Exemplo de montagem de um patch panel categoria 6 do fabricante Nexans:

O patch panel Categoria 5e da Nexans pode ser adquirido aqui: https://afl.b2w.io/aQ7M

Pratique as técnicas mostradas aqui, ou realize uma instalação de cabeamento em uma residência ou pequeno escritório, adquirindo nos links abaixo os principais materiais de categoria 5e:

Após a conectorização dos enlaces de uma instalação, é necessário realizar testes para se ter a certeza de que o processo foi feito corretamente, sem prejuízo no desempenho da rede. Equipamentos específicos são utilizados nessa fase, que podem realizar desde simples testes de continuidade elétrica nos pares até testes completos nos parâmetros de transmissão, podendo emitir relatórios de certificação, com a comparação dos resultados a normas selecionadas. Conheça meu curso sobre certificação de cabeamento e o artigo sobre a interpretação do cabeçalho de um relatório de certificação UTP.

Conheça este equipamento da Fluke que realiza testes de certificação em cabos de par trançado e fibra óptica:

Observar o formato externo de tomadas que serão instaladas em espelhos, mobiliário e caixas de piso. Embora as dimensões internas de uma tomada RJ45 fêmea sejam padronizadas, suas dimensões externas não o são. Consultar o fabricante sobre a compatibilidade de encaixe de sua tomada com demais produtos que serão utilizados como suporte. Muitas vezes será necessária a aquisição de suportes ou adaptadores específicos.

Existe o padrão de facto de tomada do tipo “keystone”, e vários fabricantes possuem tomadas compatíveis com esse padrão externo de encaixe. Outros formatos são proprietários, exigindo suportes fornecidos pelo próprio fabricante da tomada.

E como última orientação, ao instalar tomadas RJ45 em espelhos de parede, deve-se posicioná-las de forma que o patch cord se encaixe com sua trava voltada para baixo.

Exemplo de montagem de um plugue RJ45 categoria 6A do fabricante Panduit:

Exemplo de montagem de uma tomada RJ45 categoria 6A do fabricante Panduit:

Se achou este post útil, compartilhe, encaminhe a alguém que também possa achá-lo útil. Não deixe de se inscrever em meu canal do YouTube! Participe de meu grupo do Whatsapp e receba as novidades sobre meus artigos, vídeos e cursos. E curta minha página no Facebook!

Até a próxima!

Marcelo Barboza, RCDD, DCDC, ATS, DCS Design, Assessor CEEDA
Clarity Treinamentos
marcelo@claritytreinamentos.com.br

Sobre o autor
Marcelo Barboza, instrutor da área de cabeamento estruturado desde 2001, formado pelo Mackenzie, possui mais de 30 anos de experiência em TI, membro da BICSI e da comissão de estudos sobre cabeamento estruturado da ABNT/COBEI, certificado pela BICSI (RCDD, DCDC e NTS), Uptime Institute (ATS) e DCPro (Data Center Specialist – Design). Instrutor autorizado para cursos selecionados da DCProfessional, Fluke Networks, Panduit e Clarity Treinamentos. Assessor para o selo de eficiência para data centers – CEEDA.

A categoria 8 e o Ethernet a 40 Gb/s

As categorias de cabeamento de par trançado são bem conhecidas, desde a categoria 5e até a 6A. Menos conhecidas são as categorias 7 e 7A, inexistentes nas normas norte-americanas (ANSI/TIA) e pouco utilizadas no país. Mas, e quanto à categoria 8 e o Ethernet a 40 Gb/s para par trançado, já tinha ouvido falar?

Pois é, a categoria 8 de componentes de cabeamento de par trançado já foi normatizada há alguns anos, estando presente tanto nas normas internacionais (ISO/IEC) quanto nas norte-americanas (ANSI/TIA). E, a partir de meados de 2019, também em nossa norma nacional ABNT/NBR 14565 (veja abaixo meu vídeo realizado na época da publicação dessa revisão da norma).

E qual a finalidade da categoria 8? Permitir aplicações Ethernet de velocidades 25 Gb/s e 40 Gb/s em enlaces de par trançado nas instalações de data centers. No entanto, a Cat.8 é a única que prevê um canal de no máximo 30 metros, diferente das outras categorias, que permitem canais de até 100 metros de extensão.

E tem mais: a Cat.8 prevê um canal de somente duas conexões, uma em cada extremidade, no início e no fim do enlace permanente. O enlace permanente deve ter até 24 metros de cabo com condutores sólidos. O canal de 30 metros é obtido com a conexão de patch cords de até 3 metros em cada extremidade.

Canal categoria 8

Um canal de somente 30 metros seria viável em um data center? Sim, pois a ideia do Cat.8 é a de ser uma opção à fibra óptica em conexões de até 40 Gb/s dentro de uma mesma fileira de racks/gabinetes. A maioria das fileiras tem menos que 30 metros. Então a Cat.8 acaba sendo uma opção de solução mais econômica (quando se leva em consideração também o custo dos equipamentos ativos) para links “intra-fileira”, desde que a velocidade não passe de 40 Gb/s.

Fileira de racks em um data center

A frequência máxima de transmissão de sinais sobre a Cat.8 é de 2000 MHz (ou 2 GHz), o dobro da categoria anterior, a Cat.7A, que é de 1000 MHz. Veja a tabela com todas as frequências suportadas pelas diferentes categorias de componentes:

CategoriaFrequência
Máxima (MHz)
Blindagem
5e100Opcional
6250Opcional
6A500Opcional
7 (ISO)600Sim
7A (ISO)1000Sim
8 (TIA) e 8.1 (ISO)2000Sim
8.2 (ISO)2000Sim
Tabela de categorias e respectivas frequências de sinal

Só que existem alguns “detalhes”… A norma ISO/IEC reconhece duas categorias de componentes: 8.1 e 8.2. A norma ANSI/TIA reconhece apenas a categoria 8, equivalente à categoria 8.1 da ISO. E quais as diferenças? Veja essa tabela abaixo:

Categoria dos componentesCateg. TIAClasse ISOComprimento máximo (m )Qtd. máxima de conexões (*)Tipo de conector
5e5eD1004RJ45
66E1004RJ45
6A6AEA1004RJ45
7F1004Tera/GG45
7AFA1004Tera/GG45
8 (TIA) ou 8.1 (ISO)8I302RJ45
8.2 (ISO)II302Tera/GG45
Tabela de categorias de componentes e canais

Na tabela acima, você vê que as categorias 8 da ANSI/TIA e 8.1 da ISO/IEC utilizam conectores modulares de 8 contatos/8 posições (mais conhecidos como RJ-45), enquanto a categoria 8.2 utiliza os mesmos tipos de conectores que já tinham sido definidos para as categorias 7 e 7A (só que para 2000 MHz), sendo que os principais são o Tera (da Siemon) e o GG45 (da Nexans).

Exemplos de conectores Tera e GG-45

Outra diferença está na blindagem. A blindagem utilizada nos cabos Cat.8 e 8.1 geralmente é do tipo F/UTP ou U/FTP, enquanto a utilizada no 8.2 é do tipo S/FTP ou F/FTP (veja mais sobre os padrões de blindagem em meu vídeo abaixo)

Exemplos de cabos blindados

Um canal construído com componentes da categoria 8.1 é chamado de Classe I pela ISO, enquanto aquele construído com componentes categoria 8.2 é chamado de Classe II. A norma ANSI/TIA chama o canal com componentes Cat.8 também de categoria 8.

O padrão de rede Ethernet para 40 Gb/s em par trançado é o 40GBASE-T, enquanto o padrão para 25 Gb/s é o 25GBASE-T, ambos definidos na norma IEEE 802.3bq-2016, e utilizam todos os quatro pares do cabeamento (para saber mais sobre a nomenclatura utilizada para as interfaces Ethernet, veja este meu vídeo abaixo).

Todos os principais fabricantes de cabeamento já possuem soluções Cat.8, mas sua utilização ainda é bem restrita.

Eu fiz um vídeo sobre a Cat.8 e o 40GBASE-T. Confira:

Para saber mais sobre as categorias de cabos e os parâmetros de transmissão que os definem, confira meu curso SCE331.

Se achou este post útil, compartilhe, encaminhe a alguém que também possa achá-lo útil. Não deixe de se inscrever em meu canal do YouTube! Participe de meu grupo do Whatsapp e receba as novidades sobre meus artigos, vídeos e cursos. E curta minha página no Facebook!

Até a próxima!

Marcelo Barboza, RCDD, DCDC, NTS, ATS, DCS Design, Assessor CEEDA
Clarity Treinamentos
marcelo@claritytreinamentos.com.br

Sobre o autor
Marcelo Barboza, instrutor da área de cabeamento estruturado desde 2001, formado pelo Mackenzie, possui mais de 30 anos de experiência em TI, membro da BICSI e da comissão de estudos sobre cabeamento estruturado da ABNT/COBEI, certificado pela BICSI (RCDD, DCDC e NTS), Uptime Institute (ATS) e DCPro (Data Center Specialist – Design). Instrutor autorizado para cursos selecionados da DCProfessional, Fluke Networks, Panduit e Clarity Treinamentos. Assessor para o selo de eficiência para data centers – CEEDA.

Balanço de potência óptica

Escrevi em outros artigos sobre o balanço de perda óptica e seu cálculo. Mas existe um conceito muito parecido, que acaba causando confusão com o anterior, que é o do “balanço de potência óptica”. Neste artigo, vamos falar sobre ele, e como ele se diferencia do balanço de perda.

Ao final do artigo, links para vídeos meus sobre este assunto.

Só para recordar, o “balanço de perda óptica” é um cálculo realizado para estimar qual será a atenuação total de um enlace em fibra óptica antes mesmo de ser instalado. Já o “balanço de potência óptica” é um cálculo realizado para se conhecer a quantidade mínima e máxima de potência que poderá (ou deverá) ser perdida durante a transmissão.

O balanço de perda é específico para os tipos de equipamentos de transmissão e recepção (transceivers) que serão utilizados. Portanto, para realizar esse cálculo é absolutamente necessário saber quais os modelos exatos dos transceivers que serão empregados em determinada instalação.

As características dos equipamentos que precisam ser conhecidas são:

  • Potência do transmissor
  • Sensibilidade do receptor
  • Faixa dinâmica do receptor

Esses valores são tipicamente expressos em “dBm”. O dBm é uma unidade de medida que expressa a potência absoluta mediante uma relação logarítmica (em decibéis) com base em 1 mW. Ou seja, 0 dBm equivale a 1 mW. Como exemplo, 30 dBm representa uma potência 30 dB superior a 1 mW, ou seja, 1.000 mW, ou 1 W. Em mais um exemplo, -10 dBm representa uma potência 10 dB inferior a 1 mW, ou seja, 0,1 mW, ou 100 µW.

O cálculo do balanço de potência é simples: subtraímos a sensibilidade do receptor da potência do transmissor para saber o quanto de potência podemos perder durante a transmissão sem que haja uma diminuição significativa na sua qualidade (expressa pela “taxa de erro de bit”, ou BER).

Exemplos:

  • Equipamento com potência de transmissão de 10 dBm e sensibilidade do receptor de 2 dBm.
    Balanço de potência = 10 dBm – 2 dBm = 8 dB.
    Ou seja, o canal passivo de transmissão (enlace óptico completo) pode apresentar atenuação de até 8 dB sem que haja degradação de qualidade
  • Equipamento com potência de transmissão de -5 dBm e sensibilidade do receptor de -20 dBm.
    Balanço de potência = -5 dBm – (- 20 dBm) = 15 dB.
    Ou seja, o canal passivo de transmissão (enlace óptico completo) pode apresentar atenuação de até 15 dB sem que haja degradação de qualidade.

Mas não devemos nos esquecer da faixa dinâmica do receptor. Ela nos informa os valores mínimos e máximos de potência que devem ser recebidos para que o equipamento interprete os sinais recebidos corretamente.

Se um receptor possui sensibilidade de -20 dBm e faixa dinâmica de 15 dB, isso significa que ele aceita sinais com potência entre -20 dBm e -5 dBm (ou seja, -20 + 15). Se ele receber um sinal com potência superior a -5 dBm, também haverá degradação na qualidade, e poderá ocorrer até mesmo a queima do receptor. Por exemplo, se a potência do transmissor for de -2 dBm, além de saber que a atenuação máxima deve ser inferior a 18 dB (-2 – (-20)), também saberemos que a atenuação mínima do canal deverá ser de 3 dB (-2 -(-5))! Se o enlace óptico não possuir atenuação igual ou maior que 3 dB, também haverá degradação da qualidade da transmissão, com aumento do BER.

Isso ocorre com frequência em equipamentos de transmissão de longa distância, que possuem alta potência de transmissão e ata sensibilidade do receptor, pois devem contar com enlaces de diversos quilômetros de fibra óptica, com diversas emendas. Nesses casos, quando queremos testar os equipamentos em uma bancada, e vamos conectá-los apenas com um patch cord, corremos o risco de até queimar o receptor, tamanha será a potência recebida. Para isso, devemos usar atenuadores, dispositivos que introduzem uma perda proposital no enlace a fim de não “inundar” o receptor com uma potência que esteja fora de sua faixa dinâmica.

Como vimos, o resultado do balanço de potência nos dá a atenuação máxima que o canal óptico passivo pode apresentar para que o equipamento de rede funcione a contento. E é agora que entra o outro cálculo, o do “balanço de perda óptica” que vimos nos outros artigos. Sabendo do balanço de potência, temos que projetar um enlace que apresente um balanço de perda inferior ao balanço de potência do equipamento.

Ao utilizar o valor do balanço de perda, não devemos deixar de incluir previsões para manutenções futura, além de uma margem de segurança.

Exemplos:

  • Enlace composto por 20 km de fibra monomodo OS2 terminada em ambas as extremidades dentro de distribuidores ópticos (DIO) através da fusão de pigtails, cujos conectores serão acoplados na parte interna dos adaptadores frontais do DIO; haverá uma fusão no meio da rota; prever duas fusões para manutenção futura. Equipamento com potência de transmissão de 10 dBm e sensibilidade do receptor de -5 dBm:
    1. Perda da fibra óptica: 20 km X 0,4 dB/km = 8,0 dB
    2. Perda das conexões: 2 X 0,75 dB = 1,5 dB
    3. Perda das emendas: 3 X 0,3 dB = 0,9 dB
    4. Previsão de perda das possíveis emendas futuras: 2 X 0,3 dB = 0,6 dB
    5. Margem de segurança: 1 dB
    6. Balanço da perda (1310 nm e 1550 nm): 8,0 + 1,5 + 0,9 + 0,6 + 1,0 = 12,0 dB
    7. Balanço da potência: 10 – (-5) = 15 dB
    8. Conclusão: projeto correto, pois ainda há uma margem de 3 dB (15 – 12) entre o balanço da potência e as perdas projetadas do enlace óptico.
  • Enlace composto por 30 km de fibra monomodo OS2 terminada em ambas as extremidades dentro de distribuidores ópticos (DIO) através da fusão de pigtails, cujos conectores serão acoplados na parte interna dos adaptadores frontais do DIO; haverá duas fusões no meio da rota; prever duas fusões para manutenção futura. Equipamento com potência de transmissão de 5 dBm e sensibilidade do receptor de -10 dBm:
    1. Perda da fibra óptica: 30 km X 0,4 dB/km = 12,0 dB
    2. Perda das conexões: 2 X 0,75 dB = 1,5 dB
    3. Perda das emendas: 4 X 0,3 dB = 1,2 dB
    4. Previsão de perda das possíveis emendas futuras: 2 X 0,3 dB = 0,6 dB
    5. Margem de segurança: 1 dB
    6. Balanço da perda (1310 nm e 1550 nm): 12,0 + 1,5 + 1,2 + 0,6 + 1,0 = 16,3 dB
    7. Balanço da potência: 5 – (-10) = 15 dB
    8. Conclusão: projeto incorreto, o enlace óptico projetado pode apresentar perda acima do tolerado pelo equipamento previsto.

Equipamentos de rede Ethernet já possuem tabelas que mostram o balanço da perda alocada para o enlace óptico, assim não precisamos realizar esse cálculo, basta consultar as tabelas publicadas no padrão IEEE 802.3. Como exemplo, a tabela abaixo mostra a perda máxima alocada para o canal óptico para os padrões Ethernet sobre fibra óptica entre as velocidades de 10 Mb/s e 1 Gb/s:

Padrão FibraComprimento de onda (nm) Perda máx. do canal (dB)
10BASE-FL OM1 850 12,5
100BASE-FXOM1 1300 11
1000BASE-SX OM2 850 3,56
1000BASE-LX OM2 1310 2,35
1000BASE-LX SM 1310 4,57
Tabela: Requisitos para alguns padrões de rede Ethernet


Saiba mais sobre o balanço de perda óptica no curso SCE335, e sobre os padrões Ethernet no curso SCE381. Ao final de cada curso, você poderá baixar materiais de referência, realizar avaliações e, se for bem nelas, ainda receberá certificados de conclusão!

Complemente o conhecimento com meus vídeos abaixo, sobre o cálculo do balanço de perda e potência óptica, e sobre a nomenclatura das interfaces Ethernet:

Orçamento de potência óptica
Cálculo do balanço ou orçamento de perda óptica (optical loss budget)
Padrões Ethernet

Se achou este post útil, compartilhe, encaminhe a alguém que também possa achá-lo útil. Não deixe de se inscrever em meu canal do YouTube! Participe de meu grupo do Whatsapp e receba as novidades sobre meus artigos, vídeos e cursos. E curta minha página no Facebook!

Até a próxima!

Marcelo Barboza, RCDD, DCDC, NTS, ATS, DCS Design, Assessor CEEDA
Clarity Treinamentos
marcelo@claritytreinamentos.com.br

Sobre o autor
Marcelo Barboza, instrutor da área de cabeamento estruturado desde 2001, formado pelo Mackenzie, possui mais de 30 anos de experiência em TI, membro da BICSI e da comissão de estudos sobre cabeamento estruturado da ABNT/COBEI, certificado pela BICSI (RCDD, DCDC e NTS), Uptime Institute (ATS) e DCPro (Data Center Specialist – Design). Instrutor autorizado para cursos selecionados da DCProfessional, Fluke Networks, Panduit e Clarity Treinamentos. Assessor para o selo de eficiência para data centers – CEEDA.

Canal de cabeamento estruturado no YouTube

A partir deste mês iniciamos a publicação periódica de vídeos curtos tratando de temas variados relacionados ao Cabeamento Estruturado

Este é o endereço do playlist dos vídeos já publicados sobre cabeamento estruturado no canal: Cabeamento Estruturado by Marcelo Barboza

Inscreva-se no canal neste link, dê seu like e compartilhe com os colegas!

Outras playlists que você pode gostar:

E deixe na área de comentários, sob os vídeos, suas sugestões para próximos temas, e também suas críticas!

Assista já ao primeiro vídeo publicado no canal

Se achou este post útil, compartilhe, encaminhe a alguém que também possa achá-lo útil. Não deixe de se inscrever em meu canal do YouTube! Participe de meu grupo do Whatsapp e receba as novidades sobre meus artigos, vídeos e cursos. E curta minha página no Facebook!

Até a próxima!

Marcelo Barboza, RCDD, DCDC, ATS, DCS Design, Assessor CEEDA
Clarity Treinamentos
marcelo@claritytreinamentos.com.br

Sobre o autor
Marcelo Barboza, instrutor da área de cabeamento estruturado desde 2001, formado pelo Mackenzie, possui mais de 30 anos de experiência em TI, membro da BICSI e da comissão de estudos sobre cabeamento estruturado da ABNT/COBEI, certificado pela BICSI (RCDD, DCDC e NTS), Uptime Institute (ATS) e DCPro (Data Center Specialist – Design). Instrutor autorizado para cursos selecionados da DCProfessional, Fluke Networks, Panduit e Clarity Treinamentos. Assessor para o selo de eficiência para data centers – CEEDA.

Optical Loss Budget Calculation

On 21/Mar/2019, I wrote an introductory article on the “Optical Loss Budget” (http://www.claritytreinamentos.com.br/2019/03/21/optical-loss-budget-an-introduction/), where I present what an optical loss budget is and what’s its purpose. In this article, we will address how to calculate it.

To recall, the “optical loss budget” is a calculation performed to estimate what will be the total attenuation of a fiber optic link even before it is installed. Among its purposes, we can emphasize two:

  • Verify that the optical link being designed meets the requirements of the applications that will run on it. If the calculated loss budget is greater than the loss margin allocated for the cabling of the intended application (e.g. 10GBASE-SR), the link may show data loss and even “go down”;
  • Establish a threshold that will be used during the performance of acceptance tests of the installed link. When testing the link with a PMLS (power meter + light source), if the measured attenuation is greater than the project’s loss budget, then we will know that something has failed during installation: the material and/or the labor were less than reasonable.

But how to calculate the optical loss budget? First, we must know exactly which optical components will be used in the link. If possible, know the exact brand name and model. Usual components are:

  • Fiber optic cable
  • Connectors
  • Splices
  • Splitters
  • Other passive components (e.g. taps and attenuators)

Next, we must determine the loss (attenuation) that each of these components will present when installed on the link. This information can be obtained from the technical specification sheets of the selected components. Caution: the attenuation may be different depending on the wavelength of light used.

The calculation must be carried out at all wavelengths intended to be used in the link. As a minimum, test:

  • multimode fibers in wavelengths 850 nm and 1300 nm;
  • single-mode fibers in wavelengths 1310 nm and 1550 nm.

If the part numbers of the components are not yet known, use standard market values or values specified by national or international cabling standards.

Examples of standard attenuation values established by ISO/IEC 11801-1:2017:

  • Coupled connectors:                       0.75 dB
  • Splice:                                             0.3 dB
  • Multimode fiber OM1 thru OM4: 3.5 dB/km (850 nm) and 1.5 dB/km (1300 nm)
  • Multimode fiber OM5:                   3.0 dB/km (850 nm) and 1.5 dB/km (1300 nm)
  • Single-mode fiber OS1a:                 1.0 dB/km (1310 nm and 1550 nm)
  • Single-mode fiber OS2:                   0.4 dB/km (1310 nm and 1550 nm)

We also need to know the total length of the complete link, in kilometers. That is because the loss of the “fiber optic” component will be proportional to its length (so the loss is given in “dB/km” as seen above).

Based on this information, we add all the values for the link to obtain its loss budget, in decibels (dB).

Example 1: A 3,000 m link made of OS2 single-mode fiber, terminated in pigtails spliced at both ends inside optical trays, whose connectors will be coupled to the front panel adapters. There will be a splice in the middle of the link:

Optical fiber loss: 3 km X 0.4 dB/km = 1.2 dB

Connector loss: 2 X 0.75 dB = 1.5 dB

Splice loss: 3 X 0.3 dB = 0.9 dB

Loss budget (1310 nm and 1550 nm): 1.2 + 1.5 + 0.9 = 3.6 dB

Example 2: A 200 m link made of OM3 multimode fiber, terminated in field polished connectors at both ends, coupled to the front panel adapters. No splices used:

Optical fiber loss @ 850 nm: 0.2 km X 3.5 dB/km = 0.7 dB

Optical fiber loss @ 1300 nm: 0.2 km X 1.5 dB/km = 0.3 dB

Connector loss: 2 X 0.75 dB = 1.5 dB

Loss budget @ 850 nm: 0.7 + 1.5 = 2.2 dB

Loss budget @ 1300 nm: 0.3 + 1.5 = 1.8 dB

As already mentioned, the values obtained should be compared to the applications specifications and to the values measured during the certification of the installed link.

If the measured value is greater than the calculated loss budget, check the installed material, the fiber route, the cleaning of the connectors and the quality of the splices. If necessary, use an OTDR to find the locations that exhibit losses above the expected.

If you found this post useful, share it, forward it to someone who might also find it useful.

See you next time.

Marcelo Barboza, RCDD, DCDC, NTS, ATS, DCS Design, Assessor CEEDA
Clarity Treinamentos
marcelo@claritytreinamentos.com.br

About the author

Marcelo Barboza, Structured Cabling instructor since 2001, graduated in Mackenzie University, has more than 30 years of experience in IT, member of BICSI, member of the ABNT/COBEI Committee of Studies on Structured Cabling (Brazilian Standards organization), certified by BICSI (RCDD, DCDC and NTS), Uptime Institute (ATS), and DCProfessional (Data Center Specialist – Design). Authorized instructor for selected courses of DCProfessional, Fluke Networks and Clarity Treinamentos.

Optical Loss Budget – An Introduction

When designing a fiber optic link, how to ensure that there will be enough light for the application to work? Or, after installing the optical link, how to ensure that the material has of good quality and that the workforce used in the installation followed all the recommendations and good practices?

Each application (or physical network protocol, such as Ethernet, for example) for fiber optics establishes a maximum attenuation (or loss) in the channel for it to work without performance degradation. If the channel attenuation is higher than the expected, the bit error rate (BER) begins to increase, causing network slowdowns and eventually dropping the link.

Each optical component bought and installed must also have a maximum expected loss, defined in structured cabling standards. When acquiring and installing optical links, we should know what this loss is, so we can compare it to the measurements performed at the time of network certification. If the measured loss is greater than expected, whether the material acquired is not so good, or the manpower used in the installation did not follow the normative recommendations and the respective suppliers. In this case, the link may not be able to receive the extended warranty from the manufacturer.

It is precisely for this that there is such a thing as the “optical loss budget”, a calculation of how much loss an optical link should present, at maximum, to ensure the quality of the installation and the operation of the network.

See you next time!

Marcelo Barboza, RCDD, DCDC, NTS, ATS
Clarity Treinamentos

Diferenças entre as formas de diafonia NEXT e FEXT

Diafonias: NEXT e FEXT

Neste artigo, vamos explicar o conceito dos parâmetros de diafonia/crosstalk NEXT e FEXT para cabeamento em par trançado e ressaltar suas diferenças.

O “par trançado” é um dos meios físicos mais utilizados nas instalações de cabeamento estruturado. Popularmente conhecido como “UTP” (embora algumas vezes seja composto por cabos blindados, e UTP se refira apenas aos não blindados), hoje permite a transmissão de dados a velocidades de 10 gigabits por segundo ou mais em enlaces de até 100 metros.

Mas, nem tudo são flores. Se não forem utilizados produtos de boa qualidade, ou se o procedimento de instalação não for corretamente seguido, problemas podem ocorrer. É por isso que, após a instalação, são realizados testes de certificação. São diversos testes, mas neste artigo abordaremos dois deles, o NEXT e o FEXT (para entender estes e outros testes, veja meu vídeo abaixo). Vocês sabe o que são eles? Quais as semelhanças e as diferenças entre eles?

Parâmetros de teste para cabos de par trançado

Diafonia

Ambos são parâmetros que medem a “diafonia” (“crosstalk”, em inglês, abreviado como “XT”), ou seja, a interferência eletromagnética que o sinal trafegado por um par de fios trançados provoca em outro par do cabo. Qual o problema da diafonia? Por que ela é indesejável?

Cada par de um cabo interliga um equipamento transmissor (TX, que está em uma extremidade do cabo) a um equipamento receptor (RX, na outra extremidade do cabo), ambos componentes de equipamentos de comunicações, como uma placa de rede ou porta de switch, por exemplo.

Só que em uma transmissão de rede, pelo menos dois dos pares do cabo são utilizados simultaneamente. Em uma transmissão Ethernet a 1 Gb/s (ou mais), são utilizados os quatro pares do cabo. Ou seja, dois ou mais TX transmitem simultaneamente para seus respectivos RX.

Só que cada RX está interessado apenas no sinal enviado pelo TX correspondente, que está do outro lado do par/cabo. Se o sinal transmitido por um TX, através de um par, “vaza” para outro par, acaba chegando em outro RX, que não era o destinatário original da mensagem. Pior, o RX acaba recebendo pelo menos dois sinais: o desejado, isto é, aquele enviado pelo TX correspondente, mais um, indesejado, enviado por outro TX (que é a diafonia/XT), e acaba somando e, portanto, confundindo ambos! Se a intensidade da diafonia for próxima à do sinal desejado, o RX não conseguirá distinguir dentre ambos e rejeitará o sinal por completo. Se isso ocorrer com frequência, a velocidade da transmissão cairá e, eventualmente, a conexão será interrompida.

Agora que já sabemos o que é diafonia e como ela pode afetar a transmissão, vamos perceber que há dois tipos de medições realizadas de diafonia: NEXT e FEXT.

Introduzindo o NEXT e o FEXT

O NEXT (near-end crosstalk) mede a diafonia que afeta o RX que está localizado na mesma extremidade do cabo (“extremidade próxima” ou “near end”) em relação ao TX que causou essa diafonia. Ou seja, o NEXT mede a interferência que um equipamento transmissor causa no cabo e acaba afetando a habilidade do próprio equipamento de entender sinais provenientes da outra extremidade do cabo.

Já o FEXT (far-end crosstalk) mede a diafonia que afeta o RX que está localizado na extremidade oposta do cabo (“extremidade distante” ou “far end”) em relação ao TX que causou essa diafonia. Ou seja, o FEXT mede a interferência que um equipamento transmissor causa no cabo e acaba afetando a habilidade do equipamento oposto de entender seus sinais.

Em português, o NEXT é chamado de “paradiafonia”, enquanto o FEXT é a “telediafonia”. Ambos medem as consequências do mesmo fenômeno, que é a diafonia.

Testes de NEXT e FEXT

Ambos os testes devem ser realizados bidirecionalmente, ou seja, enviando-se sinal a partir de ambas as extremidades do cabo. Isso ocorre porque o próprio sinal indesejado (resultado da diafonia) sofre atenuação ao longo do cabo até chegar em algum RX. Por exemplo: um dano ao cabo que aumente a diafonia causará um NEXT muito mais elevado quando este for medido a partir da extremidade do cabo que estiver mais próxima a esse dano.

As medições de NEXT e FEXT são reportadas em combinações de dois pares ou somadas para todos os pares do cabo (“powersum”). A unidade de medida utilizada é o decibel (dB), resultado da comparação na intensidade do sinal transmitido com a do sinal indesejado recebido. O FEXT usualmente é reportado apenas após a computação da Perda de Inserção, resultando no ACR-F, mas isso já é um assunto para outro artigo!

Para saber mais sobre os testes realizados em enlaces de par trançado, não perca o curso SCE331.

Se achou este post útil, compartilhe, encaminhe a alguém que também possa achá-lo útil. Não deixe de se inscrever em meu canal do YouTube! Participe de meu grupo do Whatsapp e receba as novidades sobre meus artigos, vídeos e cursos. E curta minha página no Facebook!

Até a próxima!

Marcelo Barboza, RCDD, DCDC, NTS, ATS, DCS Design, Assessor CEEDA
Clarity Treinamentos
marcelo@claritytreinamentos.com.br

Sobre o autor
Marcelo Barboza, instrutor da área de cabeamento estruturado desde 2001, formado pelo Mackenzie, possui mais de 30 anos de experiência em TI, membro da BICSI e da comissão de estudos sobre cabeamento estruturado da ABNT/COBEI, certificado pela BICSI (RCDD, DCDC e NTS), Uptime Institute (ATS) e DCPro (Data Center Specialist – Design). Instrutor autorizado para cursos selecionados da DCProfessional, Fluke Networks, Panduit e Clarity Treinamentos. Assessor para o selo de eficiência para data centers – CEEDA.

Cálculo do balanço de perda óptica

Em 04/abr/2017, escrevi um artigo sobre o “balanço de perda óptica” (http://www.claritytreinamentos.com.br/2017/04/04/balanco-de-perda-optica/), onde conceituo o que ele é e para que serve. Neste artigo, vamos abordar a sua forma de cálculo. Veja também este vídeo, sobre esse cálculo:

Cálculo do balanço de perda óptica

Para recordar, o “balanço de perda óptica” é um cálculo realizado para estimar qual será a atenuação total de um enlace em fibra óptica antes mesmo de ser instalado. Dentre suas finalidades, podemos ressaltar duas:

  • Verificar se o enlace óptico sendo projetado atenderá aos requisitos das aplicações que nele rodarão. Se o cálculo do balanço for superior à margem de perda alocada para o cabeamento da aplicação pretendida (ex.: 10GBASE-SR), o link poderá apresentar perda de dados e até mesmo nem “subir”;
  • Estabelecer um limite que será utilizado durante os testes de aceitação do enlace instalado. Ao testar o link com um PMLS (power meter + light source), se a atenuação medida for superior ao balanço de perda do projeto, então saberemos que algo falhou na execução: o material e/ou a mão-de-obra envolvidos.

Mas, como calcular o balanço de perda óptica? Primeiramente, temos que saber exatamente quais os componentes ópticos que serão utilizados no enlace, de preferência com marca e modelo. Componentes usuais:

  • Fibra óptica
  • Conectores
  • Emendas
  • Splitters
  • Outros componentes passivos (como taps e atenuadores, por exemplo)

Em seguida, devemos determinar a perda (atenuação) que cada um desses componentes apresentará ao ser instalado no enlace. Essa informação pode ser obtida nos folhetos de especificações técnicas dos componentes escolhidos. Atenção: a atenuação poderá ser diferente dependendo do comprimento de onda de luz utilizado.

O cálculo deve ser realizado em todos os comprimentos de onda previstos a serem utilizados no enlace em questão. No mínimo, testar:

  • Fibras multimodo nos comprimentos de onda 850 nm e 1300 nm;
  • Fibras monomodo nos comprimentos de onda 1310 nm e 1550 nm.

Se as marcas e modelos dos componentes não forem ainda conhecidos, utilizar valores padrões de mercado e/ou especificados pelas normas nacionais/internacionais correspondentes.

Exemplos de valores de atenuação padrões estabelecidos pela norma ISO/IEC 11801-1:2017, e que possivelmente estarão na próxima revisão da norma nacional ABNT/NBR 14565:

  • Par de conectores acoplados: 0,75 dB
  • Emenda: 0,3 dB
  • Fibra MM, OM1 a OM4: 3,5 dB/km (850 nm) e 1,5 dB/km (1300 nm)
  • Fibra MM, OM5: 3,0 dB/km (850 nm) e 1,5 dB/km (1300 nm)
  • Fibra SM, OS1 e OS1a: 1,0 dB/km (1310 nm e 1550 nm)
  • Fibra SM, OS2: 0,4 dB/km (1310 nm e 1550 nm)

Precisamos saber também o comprimento total do enlace final, em quilômetros. Pois a perda do componente “fibra óptica” será proporcional ao seu comprimento (por isso a perda é dada em “dB/km”, como visto acima).

Com base nessas informações, somamos todos os valores para o enlace para a obtenção do balanço de perda, em decibéis (dB).

Exemplos:

1 – Enlace composto por 3.000 m de fibra monomodo OS2 terminada em ambas as extremidades dentro de distribuidores ópticos (DIO) através da fusão de pigtails, cujos conectores serão acoplados na parte interna dos adaptadores frontais do DIO; haverá uma fusão no meio da rota

Perda da fibra óptica: 3 km X 0,4 dB/km = 1,2 dB
Perda das conexões: 2 X 0,75 dB = 1,5 dB
Perda das emendas: 3 X 0,3 dB = 0,9 dB
Balanço da perda (1310 nm e 1550 nm): 1,2 + 1,5 + 0,9 = 3,6 dB

2 – Enlace composto por 200 m de fibra multimodo OM3 terminada em ambas as extremidades dentro de distribuidores ópticos (DIO) através da terminação direta em conectores (processo de cola e polimento), e eles serão acoplados na parte interna dos adaptadores frontais do DIO

Perda da fibra óptica a 850 nm: 0,2 km X 3,5 dB/km = 0,7 dB
Perda da fibra óptica a 1300 nm: 0,2 km X 1,5 dB/km = 0,3 dB
Perda das conexões: 2 X 0,75 dB = 1,5 dB
Balanço da perda a 850 nm: 0,7 + 1,5 = 2,2 dB
Balanço da perda a 1300 nm: 0,3 + 1,5 = 1,8 dB

Os valores obtidos, como já mencionado, deverão ser comparados às especificações das aplicações e aos valores medidos durante a certificação do enlace instalado.

Se o valor medido for superior ao balanço de perda calculado, verifique o material instalado, a rota da fibra, a limpeza das conexões e a qualidade das emendas. Se for o caso, utilize um OTDR para encontrar os locais que apresentam perdas acima do esperado.

O vídeo abaixo ensina você a fazer uma planilha Excel para o cálculo do balanço de perda de acordo com os valores recomendados na norma nacional NBR 14565:2019:

Saiba mais sobre o balanço de perda óptica no curso rápido online SCE335, e sobre os testes com PMLS no curso rápido online SCE333. Ao final de cada curso, você poderá baixar materiais de referência, realizar avaliações e, se for bem nelas, ainda receberá certificados de conclusão!

Complemente o conhecimento com este meu vídeo sobre orçamento de potência óptica:

Orçamento de potência óptica

Se achou este post útil, compartilhe, encaminhe a alguém que também possa achá-lo útil. Não deixe de se inscrever em meu canal do YouTube! Participe de meu grupo do Whatsapp e receba as novidades sobre meus artigos, vídeos e cursos. E curta minha página no Facebook!

Até a próxima!

Marcelo Barboza, RCDD, DCDC, NTS, ATS, DCS Design, Assessor CEEDA
Clarity Treinamentos
marcelo@claritytreinamentos.com.br

Sobre o autor
Marcelo Barboza, instrutor da área de cabeamento estruturado desde 2001, formado pelo Mackenzie, possui mais de 30 anos de experiência em TI, membro da BICSI e da comissão de estudos sobre cabeamento estruturado da ABNT/COBEI, certificado pela BICSI (RCDD, DCDC e NTS), Uptime Institute (ATS) e DCPro (Data Center Specialist – Design). Instrutor autorizado para cursos selecionados da DCProfessional, Fluke Networks, Panduit e Clarity Treinamentos. Assessor para o selo de eficiência para data centers – CEEDA.