Publicada a norma nacional de testes em cabeamento óptico

Introdução

As fibras ópticas estão sendo cada vez mais utilizadas em redes de dados, tanto em data centers, quanto em redes de acesso dos assinantes de serviços públicos de telecomunicações (como o FTTx). Elas oferecem maior largura de banda, além de serem mais compactas do que os cabos com condutores metálicos e não sofrerem ou causarem interferência eletromagnética.

Só que há a necessidade de se testar esses enlaces ópticos, principalmente após sua instalação, pois durante a implantação, seus componentes são submetidos a vários procedimentos que podem comprometer seu desempenho, tais como: tração, curvatura e torção dos cabos ópticos; emendas das fibras; confecção de conectores ópticos; conexão de patch cords em cross-connects.

Durante a implantação, tais procedimentos podem levar à degradação do desempenho do enlace devido a diversos fatores decorrentes. Exemplos: macrocurvaturas; rompimento das fibras; emendas defeituosas; conectores trincados ou sujos etc.

Normas de testes de fibra óptica

Portanto, para termos certeza de que, tanto o material utilizado no projeto, quanto as técnicas utilizadas em sua instalação, atendem às melhores especificações de qualidade, possuindo desempenho suficiente para permitir todo o tráfego de dados esperado ao longo da vida útil do enlace óptico, temos que testá-lo utilizando as ferramentas, equipamentos e procedimentos corretos.

A questão é que as normas nacionais até então existentes somente especificavam técnicas de ensaio para componentes (somente cabo, somente fibra, somente emenda, ou somente conexões). Como exemplos, podemos citar normas para ensaios de: impacto, sensibilidade à curvatura, abrasão e ciclo térmico de cabos ópticos; durabilidade e estabilidade de conectores e adaptadores; determinação de perda na emenda etc.

Mas não havia uma norma que estabelecia as bases para o teste de enlaces ópticos inteiros, instalados, já contendo uma coleção de componentes encadeados, como cabos, emendas, conectores e patch cords.

Só que agora já temos essa norma! É a NBR 16869-2 – Cabeamento estruturado – Parte 2: Ensaio do cabeamento óptico, publicada em 12/04/2021. Ela foi resultado do trabalho da comissão de estudos CE-003:046.005, pertencente ao Comitê Brasileiro de Eletricidade (COBEI), ligado à ABNT. Esta norma, em grande parte, segue as orientações das revisões mais recentes das normas internacionais ISO/IEC 14763-3 (Information technology – Implementation and operation of customer premises cabling – Part 3: Testing of optical fibre cabling) e IEC 61280-4-1 (Fibre-optic communication subsystem test procedures – Part 4-1: Installed cabling plant – Multimode attenuation measurement).

Siga este link (https://www.abntcatalogo.com.br/norma.aspx?ID=465992) para adquirir a norma ou ver mais detalhes. Para saber quais são as normas mais relevantes no âmbito do cabeamento estruturado, leia este artigo.

A NBR 16869-2

A NBR 16869-2 descreve equipamentos, ferramentas e procedimentos que devem ser utilizados, como mínimo, para a execução de testes em enlaces instalados de fibra óptica monomodo e multimodo. São eles: kits de limpeza de faces de conectores; microscópio para inspeção da face de conectores; LSPM; OTDR; respectivos acessórios.

Ensaio do cabeamento de acordo com a NBR 16869-2

Esta norma complementa as demais normas nacionais que tratam do projeto de sistemas de cabeamento estruturado em fibra óptica, que são as ABNT NBR 14565, ABNT NBR 16264, ABNT NBR 16521 e ABNT NBR 16665.

Existe ainda a NBR 16869-1, que trata sobre os requisitos para o planejamento de sistemas de cabeamento estruturado. Esta é uma norma recente, publicada em julho de 2020, e que possivelmente será tema de outro artigo do blog. E a NBR 16415, que trata dos caminhos e espaços para cabeamento estruturado.

O vídeo a seguir fala sobre a publicação da norma NBR 16869-2.

Inspeção e limpeza

A norma descreve ferramentas e procedimentos mínimos a serem adotados para inspecionar e limpar a face de conectores ópticos. Os conectores estão presentes nas terminações dos cabos e dos patch cords ópticos, mas também estão presentes nas portas dos equipamentos de rede e dos próprios equipamentos de teste, além de fazerem parte dos cordões e fibras de lançamento que estarão inclusos nos procedimentos de ensaio.

A norma frisa a importância de se inspecionar e, se for o caso, limpar as interfaces das fibras ópticas que farão parte dos testes antes que qualquer processo de medição e de referência seja executado. Ela define requisitos mínimos do microscópio a ser usado na inspeção da face dos conectores, bem como a norma internacional de referência sobre o assunto.

Como parte da certificação de um enlace óptico instalado, a norma define os seguintes tipos de inspeção sobre o cabeamento instalado:

  • Continuidade da fibra óptica: para verificar se as fibras são íntegras de uma extremidade a outra do enlace;
  • Polaridade da instalação óptica: para verificar se cada fibra conecta as portas correspondentes em ambas as extremidades, sem inversões;
  • Comprimento do cabo óptico: pode ser verificado visualmente pelas marcações de capa ou com o auxílio de equipamentos de medição (como um OTDR);
  • Inspeção das faces dos conectores: como já comentado neste artigo;
  • Dimensão do núcleo da fibra óptica: verificação das dimensões do núcleo em relação à casca da fibra nas terminações ópticas.

Veja no vídeo a seguir o que pode acontecer se a inspeção e a limpeza não forem realizadas corretamente.

LSPM

O LSPM nada mais é do que o popularmente conhecido “power meter”. A sigla significa “Light Source and Power Meter”, a combinação entre a “fonte de luz” (necessária para acoplar luz na fibra a ser testada) e o “power meter” (o medidor de potência óptica, em si). Equipamentos LSPM, como mínimo, permitem medir a atenuação (perda) do enlace óptico completo.

A norma define os procedimentos para medição da atenuação do enlace, os comprimentos de onda de trabalho do LSPM, o nível de precisão do equipamento, além de demais requisitos, como sua calibração e especificações dos cordões de ensaio, por exemplo.

Um detalhe a observar, muito importante, por sinal, e coberto pela norma, é o método de referência a ser utilizado ao se configurar o LSPM antes dos testes. A norma define quatro métodos de referência, a saber:

  1. Um cordão
  2. Dois cordões
  3. Três cordões
  4. Cordão do equipamento

A diferença entre esses quatro métodos é a inclusão ou não da atenuação dos conectores que estão nas extremidades do enlace a ser testado.

Um dos modelos de referência

Estes vídeos exploram alguns detalhes dos testes realizados com LSPM.

OTDR

O OTDR (Optical Time Domain Reflectometer) é um equipamento que consegue medir parâmetros tais como atenuação, perda de retorno, atraso de propagação e comprimento da fibra. Ele pode realizar testes tanto do enlace completo quanto de seus componentes individuais, como trechos de fibra, emendas, conexões e dobras na fibra. Portanto, além de apenas ser utilizado para testes de aceitação do enlace, também é bastante útil no diagnóstico em instalações com falhas.

A norma define os procedimentos para os testes de enlace completo e de componente, os comprimentos de onda de trabalho do OTDR, e a forma recomendada de utilização das fibras de lançamento e fibras terminais durante os testes. Essas fibras de lançamento também têm suas características mínimas definidas nessa norma. Uma dessas características, imprescindível, é a que possuam comprimento superior à atenuação da zona morta do OTDR utilizado.

Exemplo de medição com OTDR

Para a inclusão de todas as conexões na medição realizada pelo OTDR, é necessária a utilização de fibras de lançamento no início e no final do enlace a ser testado. A norma explica a importância da utilização dessas fibras de lançamento, assim como detalha os aspectos a serem levados em consideração.

Estes vídeos explicam alguns aspectos dos testes com OTDR.

Outros tópicos

Além dos equipamentos e procedimentos já citados, a norma também dá recomendações com relação aos seguintes assuntos: calibração dos instrumentos; documentação dos testes realizados nos enlaces; fibras de lançamento; cálculo do balanço de perda.

A norma também tece considerações sobre testes unidirecionais e bidirecionais, tratamento e interpretação dos resultados, e fatores de incerteza na medição com LSPM e OTDR.

Os quatro métodos de referência de cordões usados com LSPM são explicados em detalhes nos anexos da norma. Há também anexos informativo sobre os detalhes mais técnicos de operação de um OTDR.

E por último, mas não menos importante, um anexo trás quatro exemplos de cálculo do balanço de perda de potência óptica. A atenuação do enlace óptico, medida por LSPM ou OTDR, deve ser comparada com o resultado deste cálculo, que servirá de parâmetro para aceitação da instalação.

No site da Clarity Treinamentos há uma calculadora online gratuita que ajuda o projetista ou instalador a realizar esse cálculo: https://www.claritytreinamentos.com.br/balanco-de-perda-optica/ . O vídeo a seguir também detalha a realização desse cálculo.

A atenuação medida também deve ser comparada com a perda máxima permitida para a tecnologia de rede que se pretende usar no enlace. Para conhecer os requisitos das tecnologias Ethernet, consulte estas tabelas, que cobrem desde 10 Mb/s até 400 Gb/s.

Conclusão

Agora já temos uma norma que define os procedimentos de testes para enlaces instalados em fibra óptica. Cabe agora aos profissionais da área se atualizarem e se apropriarem de seu conteúdo, de forma a entregarem instalações de fibra óptica com mais qualidade e garantia de desempenho.

Se achou este post útil, compartilhe, encaminhe a alguém que também possa achá-lo útil. Não deixe de se inscrever em meu canal do YouTube! Participe de meu grupo do Whatsapp e receba as novidades sobre meus artigos, vídeos e cursos. E curta minha página no Facebook!

Até a próxima!

Marcelo Barboza, RCDD, DCDC, ATS, DCS Design, Assessor CEEDA
Clarity Treinamentos
marcelo@claritytreinamentos.com.br

Sobre o autor
Marcelo Barboza, instrutor da área de cabeamento estruturado desde 2001, formado pelo Mackenzie, possui mais de 30 anos de experiência em TI, membro da BICSI e das comissões de estudos sobre cabeamento estruturado e de infraestrutura de data centers da ABNT, certificado pela BICSI (RCDD e DCDC), Uptime Institute (ATS) e DCPro (Data Center Specialist – Design). Instrutor autorizado para cursos selecionados da DCProfessional, Fluke Networks, Panduit e Clarity Treinamentos. Assessor para o selo de eficiência para data centers – CEEDA.

Canal de cabeamento estruturado no YouTube

A partir deste mês iniciamos a publicação periódica de vídeos curtos tratando de temas variados relacionados ao Cabeamento Estruturado

Este é o endereço do playlist dos vídeos já publicados sobre cabeamento estruturado no canal: Cabeamento Estruturado by Marcelo Barboza

Inscreva-se no canal neste link, dê seu like e compartilhe com os colegas!

Outras playlists que você pode gostar:

E deixe na área de comentários, sob os vídeos, suas sugestões para próximos temas, e também suas críticas!

Assista já ao primeiro vídeo publicado no canal

Se achou este post útil, compartilhe, encaminhe a alguém que também possa achá-lo útil. Não deixe de se inscrever em meu canal do YouTube! Participe de meu grupo do Whatsapp e receba as novidades sobre meus artigos, vídeos e cursos. E curta minha página no Facebook!

Até a próxima!

Marcelo Barboza, RCDD, DCDC, ATS, DCS Design, Assessor CEEDA
Clarity Treinamentos
marcelo@claritytreinamentos.com.br

Sobre o autor
Marcelo Barboza, instrutor da área de cabeamento estruturado desde 2001, formado pelo Mackenzie, possui mais de 30 anos de experiência em TI, membro de comissões de estudos sobre cabeamento estruturado e data center da ABNT, certificado pela BICSI (RCDD, DCDC), Uptime Institute (ATS) e DCPro (Data Center Specialist – Design). Instrutor autorizado para cursos selecionados da DCProfessional, Fluke Networks, Panduit e Clarity Treinamentos. Assessor para o selo de eficiência para data centers – CEEDA.

Diferenças entre as formas de diafonia NEXT e FEXT

Diafonias: NEXT e FEXT

Neste artigo, vamos explicar o conceito dos parâmetros de diafonia/crosstalk NEXT e FEXT para cabeamento em par trançado e ressaltar suas diferenças.

O “par trançado” é um dos meios físicos mais utilizados nas instalações de cabeamento estruturado. Popularmente conhecido como “UTP” (embora algumas vezes seja composto por cabos blindados, e UTP se refira apenas aos não blindados), hoje permite a transmissão de dados a velocidades de 10 gigabits por segundo ou mais em enlaces de até 100 metros.

Mas, nem tudo são flores. Se não forem utilizados produtos de boa qualidade, ou se o procedimento de instalação não for corretamente seguido, problemas podem ocorrer. É por isso que, após a instalação, são realizados testes de certificação. São diversos testes, mas neste artigo abordaremos dois deles, o NEXT e o FEXT (para entender estes e outros testes, veja meu vídeo abaixo). Vocês sabe o que são eles? Quais as semelhanças e as diferenças entre eles?

Parâmetros de teste para cabos de par trançado

Diafonia

Ambos são parâmetros que medem a “diafonia” (“crosstalk”, em inglês, abreviado como “XT”), ou seja, a interferência eletromagnética que o sinal trafegado por um par de fios trançados provoca em outro par do cabo. Qual o problema da diafonia? Por que ela é indesejável?

Cada par de um cabo interliga um equipamento transmissor (TX, que está em uma extremidade do cabo) a um equipamento receptor (RX, na outra extremidade do cabo), ambos componentes de equipamentos de comunicações, como uma placa de rede ou porta de switch, por exemplo.

Só que em uma transmissão de rede, pelo menos dois dos pares do cabo são utilizados simultaneamente. Em uma transmissão Ethernet a 1 Gb/s (ou mais), são utilizados os quatro pares do cabo. Ou seja, dois ou mais TX transmitem simultaneamente para seus respectivos RX.

Só que cada RX está interessado apenas no sinal enviado pelo TX correspondente, que está do outro lado do par/cabo. Se o sinal transmitido por um TX, através de um par, “vaza” para outro par, acaba chegando em outro RX, que não era o destinatário original da mensagem. Pior, o RX acaba recebendo pelo menos dois sinais: o desejado, isto é, aquele enviado pelo TX correspondente, mais um, indesejado, enviado por outro TX (que é a diafonia/XT), e acaba somando e, portanto, confundindo ambos! Se a intensidade da diafonia for próxima à do sinal desejado, o RX não conseguirá distinguir dentre ambos e rejeitará o sinal por completo. Se isso ocorrer com frequência, a velocidade da transmissão cairá e, eventualmente, a conexão será interrompida.

Agora que já sabemos o que é diafonia e como ela pode afetar a transmissão, vamos perceber que há dois tipos de medições realizadas de diafonia: NEXT e FEXT.

Introduzindo o NEXT e o FEXT

O NEXT (near-end crosstalk) mede a diafonia que afeta o RX que está localizado na mesma extremidade do cabo (“extremidade próxima” ou “near end”) em relação ao TX que causou essa diafonia. Ou seja, o NEXT mede a interferência que um equipamento transmissor causa no cabo e acaba afetando a habilidade do próprio equipamento de entender sinais provenientes da outra extremidade do cabo.

Já o FEXT (far-end crosstalk) mede a diafonia que afeta o RX que está localizado na extremidade oposta do cabo (“extremidade distante” ou “far end”) em relação ao TX que causou essa diafonia. Ou seja, o FEXT mede a interferência que um equipamento transmissor causa no cabo e acaba afetando a habilidade do equipamento oposto de entender seus sinais.

Em português, o NEXT é chamado de “paradiafonia”, enquanto o FEXT é a “telediafonia”. Ambos medem as consequências do mesmo fenômeno, que é a diafonia.

Testes de NEXT e FEXT

Ambos os testes devem ser realizados bidirecionalmente, ou seja, enviando-se sinal a partir de ambas as extremidades do cabo. Isso ocorre porque o próprio sinal indesejado (resultado da diafonia) sofre atenuação ao longo do cabo até chegar em algum RX. Por exemplo: um dano ao cabo que aumente a diafonia causará um NEXT muito mais elevado quando este for medido a partir da extremidade do cabo que estiver mais próxima a esse dano.

As medições de NEXT e FEXT são reportadas em combinações de dois pares ou somadas para todos os pares do cabo (“powersum”). A unidade de medida utilizada é o decibel (dB), resultado da comparação na intensidade do sinal transmitido com a do sinal indesejado recebido. O FEXT usualmente é reportado apenas após a computação da Perda de Inserção, resultando no ACR-F, mas isso já é um assunto para outro artigo!

Para saber mais sobre os testes realizados em enlaces de par trançado, não perca o curso SCE331.

Se achou este post útil, compartilhe, encaminhe a alguém que também possa achá-lo útil. Não deixe de se inscrever em meu canal do YouTube! Participe de meu grupo do Whatsapp e receba as novidades sobre meus artigos, vídeos e cursos. E curta minha página no Facebook!

Até a próxima!

Marcelo Barboza, RCDD, DCDC, NTS, ATS, DCS Design, Assessor CEEDA
Clarity Treinamentos
marcelo@claritytreinamentos.com.br

Sobre o autor
Marcelo Barboza, instrutor da área de cabeamento estruturado desde 2001, formado pelo Mackenzie, possui mais de 30 anos de experiência em TI, membro da BICSI e da comissão de estudos sobre cabeamento estruturado da ABNT/COBEI, certificado pela BICSI (RCDD, DCDC e NTS), Uptime Institute (ATS) e DCPro (Data Center Specialist – Design). Instrutor autorizado para cursos selecionados da DCProfessional, Fluke Networks, Panduit e Clarity Treinamentos. Assessor para o selo de eficiência para data centers – CEEDA.

Cálculo do balanço de perda óptica

Em 04/abr/2017, escrevi um artigo sobre o “balanço de perda óptica” (https://www.claritytreinamentos.com.br/2017/04/04/balanco-de-perda-optica/), onde conceituo o que ele é e para que serve. Neste artigo, vamos abordar a sua forma de cálculo. Veja também este vídeo, sobre esse cálculo:

Cálculo do balanço de perda óptica

Para recordar, o “balanço de perda óptica” é um cálculo realizado para estimar qual será a atenuação total de um enlace em fibra óptica antes mesmo de ser instalado. Dentre suas finalidades, podemos ressaltar duas:

  • Verificar se o enlace óptico sendo projetado atenderá aos requisitos das aplicações que nele rodarão. Se o cálculo do balanço for superior à margem de perda alocada para o cabeamento da aplicação pretendida (ex.: 10GBASE-SR), o link poderá apresentar perda de dados e até mesmo nem “subir”;
  • Estabelecer um limite que será utilizado durante os testes de aceitação do enlace instalado. Ao testar o link com um PMLS (power meter + light source), se a atenuação medida for superior ao balanço de perda do projeto, então saberemos que algo falhou na execução: o material e/ou a mão-de-obra envolvidos.

Mas, como calcular o balanço de perda óptica? Primeiramente, temos que saber exatamente quais os componentes ópticos que serão utilizados no enlace, de preferência com marca e modelo. Componentes usuais:

  • Fibra óptica
  • Conectores
  • Emendas
  • Splitters
  • Outros componentes passivos (como taps e atenuadores, por exemplo)

Em seguida, devemos determinar a perda (atenuação) que cada um desses componentes apresentará ao ser instalado no enlace. Essa informação pode ser obtida nos folhetos de especificações técnicas dos componentes escolhidos. Atenção: a atenuação poderá ser diferente dependendo do comprimento de onda de luz utilizado.

O cálculo deve ser realizado em todos os comprimentos de onda previstos a serem utilizados no enlace em questão. No mínimo, testar:

  • Fibras multimodo nos comprimentos de onda 850 nm e 1300 nm;
  • Fibras monomodo nos comprimentos de onda 1310 nm e 1550 nm.

Se as marcas e modelos dos componentes não forem ainda conhecidos, utilizar valores padrões de mercado e/ou especificados pelas normas nacionais/internacionais correspondentes.

Exemplos de valores de atenuação padrões estabelecidos pela norma ISO/IEC 11801-1:2017, e que possivelmente estarão na próxima revisão da norma nacional ABNT/NBR 14565:

  • Par de conectores acoplados: 0,75 dB
  • Emenda: 0,3 dB
  • Fibra MM, OM1 a OM4: 3,5 dB/km (850 nm) e 1,5 dB/km (1300 nm)
  • Fibra MM, OM5: 3,0 dB/km (850 nm) e 1,5 dB/km (1300 nm)
  • Fibra SM, OS1 e OS1a: 1,0 dB/km (1310 nm e 1550 nm)
  • Fibra SM, OS2: 0,4 dB/km (1310 nm e 1550 nm)

Precisamos saber também o comprimento total do enlace final, em quilômetros. Pois a perda do componente “fibra óptica” será proporcional ao seu comprimento (por isso a perda é dada em “dB/km”, como visto acima).

Com base nessas informações, somamos todos os valores para o enlace para a obtenção do balanço de perda, em decibéis (dB).

Exemplos:

1 – Enlace composto por 3.000 m de fibra monomodo OS2 terminada em ambas as extremidades dentro de distribuidores ópticos (DIO) através da fusão de pigtails, cujos conectores serão acoplados na parte interna dos adaptadores frontais do DIO; haverá uma fusão no meio da rota

Perda da fibra óptica: 3 km X 0,4 dB/km = 1,2 dB
Perda das conexões: 2 X 0,75 dB = 1,5 dB
Perda das emendas: 3 X 0,3 dB = 0,9 dB
Balanço da perda (1310 nm e 1550 nm): 1,2 + 1,5 + 0,9 = 3,6 dB

2 – Enlace composto por 200 m de fibra multimodo OM3 terminada em ambas as extremidades dentro de distribuidores ópticos (DIO) através da terminação direta em conectores (processo de cola e polimento), e eles serão acoplados na parte interna dos adaptadores frontais do DIO

Perda da fibra óptica a 850 nm: 0,2 km X 3,5 dB/km = 0,7 dB
Perda da fibra óptica a 1300 nm: 0,2 km X 1,5 dB/km = 0,3 dB
Perda das conexões: 2 X 0,75 dB = 1,5 dB
Balanço da perda a 850 nm: 0,7 + 1,5 = 2,2 dB
Balanço da perda a 1300 nm: 0,3 + 1,5 = 1,8 dB

Os valores obtidos, como já mencionado, deverão ser comparados às especificações das aplicações e aos valores medidos durante a certificação do enlace instalado.

Se o valor medido for superior ao balanço de perda calculado, verifique o material instalado, a rota da fibra, a limpeza das conexões e a qualidade das emendas. Se for o caso, utilize um OTDR para encontrar os locais que apresentam perdas acima do esperado.

Aqui neste webiste eu disponibilizei uma ferramenta online totalmente gratuita para você calcular o balanço de perda de um link óptico. Acesse a ferramenta clicando aqui!

O vídeo abaixo ensina você a fazer uma planilha Excel para o cálculo do balanço de perda de acordo com os valores recomendados na norma nacional NBR 14565:2019:

Saiba mais sobre o balanço de perda óptica no curso rápido online SCE335, e sobre os testes com PMLS no curso rápido online SCE333. Ao final de cada curso, você poderá baixar materiais de referência, realizar avaliações e, se for bem nelas, ainda receberá certificados de conclusão!

Complemente o conhecimento com este meu vídeo sobre orçamento de potência óptica:

Orçamento de potência óptica

Se achou este post útil, compartilhe, encaminhe a alguém que também possa achá-lo útil. Não deixe de se inscrever em meu canal do YouTube! Participe de meu grupo do Whatsapp e receba as novidades sobre meus artigos, vídeos e cursos. E curta minha página no Facebook!

Até a próxima!

Marcelo Barboza, RCDD, DCDC, NTS, ATS, DCS Design, Assessor CEEDA
Clarity Treinamentos
marcelo@claritytreinamentos.com.br

Sobre o autor
Marcelo Barboza, instrutor da área de cabeamento estruturado desde 2001, formado pelo Mackenzie, possui mais de 30 anos de experiência em TI, membro da BICSI e da comissão de estudos sobre cabeamento estruturado da ABNT/COBEI, certificado pela BICSI (RCDD, DCDC e NTS), Uptime Institute (ATS) e DCPro (Data Center Specialist – Design). Instrutor autorizado para cursos selecionados da DCProfessional, Fluke Networks, Panduit e Clarity Treinamentos. Assessor para o selo de eficiência para data centers – CEEDA.

Análise do Relatório de Certificação de Cabeamento UTP

Neste artigo, vamos falar sobre a aceitação de um relatório de teste de certificação de cabos de par trançado realizado com um DSX-5000 CableAnalyzer da série Versiv, da Fluke Networks. E não vamos falar do relatório inteiro, nem dos aspectos mais técnicos dos parâmetros de desempenho, como NEXT e Return Loss. Vamos nos ater apenas ao cabeçalho do relatório. Para entender melhor o que é e qual a importância da certificação do cabeamento, assista este meu vídeo:

Certificação do cabeamento estruturado

Você sabia que é possível aceitar ou rejeitar um teste apenas analisando o cabeçalho do relatório? Vamos analisar o cabeçalho do teste abaixo e tirar algumas conclusões. Mas, antes de continuar a ler o artigo, dê uma olhada e veja se consegue descobrir algumas “pegadinhas”.

Vemos que o teste foi realizado no enlace identificado como TO-001 no dia 25 de maio de 2018, pouco depois das 10 horas da manhã. Comece sua análise por aí. Esse dia e horário faz sentido para você, é um momento condizente com o andamento dos serviços contratados?

Mais abaixo, a “altura livre” nos mostra o quanto o teste superou (ou não, se for negativo) a norma escolhida como parâmetro para a certificação. No caso, superou a norma da ANSI/TIA em 4,1 dB, o que é bom, compatível com o “PASSA” no canto superior direito.

Mas logo a seguir vemos uma aparente inconsistência: a norma utilizada para o teste foi da TIA, tendo por base a Categoria 5e de componentes, no modelo “Permanent Link”, que testa a parte “permanente” da instalação, ou seja, entre o patch panel do rack e a tomada de telecomunicações da área de trabalho, o que está ok. Só que logo abaixo o cabo foi descrito como sendo “Cat 6”, ou seja, de uma categoria superior ao limite Cat. 5e da norma utilizada. Isto estará certo? Se os demais componentes do enlace também forem da Categoria 6, o correto seria ter escolhido a norma “TIA Cat 6 Perm. Link”.

O teste realizado não conferiu todo o desempenho do cabo instalado. Isso seria justificado se o enlace mistura cabo Cat. 6 com componentes Cat. 5e, como tomadas e patch panels. É assim que está a instalação? Ou o instalador não fez o serviço corretamente e não consegue certificá-lo como Cat. 6 (que é mais exigente) e rebaixou o teste para Cat. 5e, tentando enganar o cliente? A verificar…

Agora, voltando à “altura livre” e ao “PASSA”, vemos que ele se aplica ao teste Categoria 5e, e não a um cabeamento Categoria 6… Será que se refizermos o teste em Cat. 6 ele passa? Apenas lembrando, um enlace Cat. 6 deve ser certificado a até 250 MHz, enquanto o Cat. 5e é testado até somente 100 MHz, bem abaixo da Cat. 6.

Ainda falando sobre o tipo informado de cabo, “Cat 6 U/UTP”: esse cabo não é blindado. Mas, será que o cabeamento instalado é esse mesmo? Se for blindado, sua blindagem deve ser verificada por continuidade. Como foi informado um cabo não blindado, o equipamento não testou a continuidade da blindagem. Verifique o tipo de cabo instalado. Um cabo blindado precisa ter sua blindagem contínua ao longo de todo o enlace de forma a garantir seu desempenho contra interferências eletromagnéticas. E essa continuidade não será verificada se o operador do equipamento não informar corretamente o tipo de cabo.

Agora, uma pegadinha! Vimos que esse teste recebeu um “PASSA”, mas se analisarmos mais abaixo no relatório, na parte de resultados detalhados, vemos que há um teste cujo valor aparece com um asterisco do lado direito: “NEXT (dB)     0,1*”. O que significa isso?

Isso significa que o pior resultado desse teste caiu dentro da margem de precisão do equipamento utilizado! O nome disso é “resultado marginal”. Como o teste passou, isso é um PASSA*. Se tivesse falhado, seria um FALHA*. Isso é grave? Não muito, mas um resultado marginal o torna muito perto do limite estabelecido pela norma utilizada. Se você espera um cabeamento “muito melhor que a norma”, então resultados marginais não são o ideal. Além disso, se você requisitar a garantia estendida do fabricante de cabeamento, pode ser que ele recuse.

Outra coisa: foi informado um cabo genérico, sem especificar fabricante e modelo. Isso garantiria o tipo da blindagem e o NVP declarado, no caso, 70%. Se o NVP não estiver correto, o comprimento medido pelo equipamento não será o real, podendo ser maior ou menor. Se essa informação for importante para você, peça para que o modelo de cabo correto seja informado (com blindagem e NVP corretos), e que os testes sejam refeitos!

O nome do operador informado é “Marcelo”. Será que foi ele quem realizou o teste? Esse campo é editável no software… O ideal é que o teste tenha sido realizado por um técnico certificado “Fluke CCTT – Certified Cabling Test Technician”, garantindo que todos os passos, desde a configuração do teste até a documentação dos resultados tenham sido realizados da melhor maneira possível, de acordo com as recomendações do fabricante do equipamento. Esse certificado tem validade de dois anos. Na dúvida, peça cópia do diploma do técnico que está operando o equipamento.

O software presente no equipamento de testes apresenta o firmware versão 5.3, enquanto a versão atual é 5.5. Isso não é crítico, mas convém estar com o equipamento sempre atualizado, de forma a realizar os testes mais correntes.

Outra informação crítica: a data de calibração dos módulos (28/out/2016) é mais de um ano anterior à data do teste (25/mai/2018). A Fluke recomenda calibração anual dos módulos para que eles continuem com a precisão garantida. É bom pedir que os equipamentos sejam calibrados na autorizada e depois que os testes sejam refeitos!

E temos ainda mais uma inconsistência: os adaptadores de link utilizados (“DSX-CHA004”) são apropriados para testes de “canal”, que incluem os patch cords em ambas as extremidades do enlace. E a norma utilizada foi a de “permanent link”, que não inclui os patch cords, sendo portanto mais exigente. O correto seria ter feito o teste com os adaptadores modelo DSX-PLA004.

Como vimos, em um simples cabeçalho de teste temos diversas informações importantes sobre a certificação. Saber analisar tais informações é crucial para termos a certeza de que nosso cabeamento foi corretamente testado, de acordo com nossa necessidade, com aquilo que contratamos, e com as recomendações de normas e fabricantes.

O tema abordado neste artigo é apenas um dos tópicos que fazem parte dos cursos Fluke CCTT – Certified Cabling Test Technician e SCE331. Confira aqui a data e o local da próxima turma do CCTT.

Conheça um equipamento de certificação que gera relatórios semelhantes àquele analisado neste artigo:

Se achou este post útil, compartilhe, encaminhe a alguém que também possa achá-lo útil. Não deixe de se inscrever em meu canal do YouTube! Participe de meu grupo do Whatsapp e receba as novidades sobre meus artigos, vídeos e cursos. E curta minha página no Facebook!

Até a próxima!

Marcelo Barboza, RCDD, DCDC, ATS, DCS Design, Assessor CEEDA
Clarity Treinamentos
marcelo@claritytreinamentos.com.br

Sobre o autor
Marcelo Barboza, instrutor da área de cabeamento estruturado desde 2001, formado pelo Mackenzie, possui mais de 30 anos de experiência em TI, membro da BICSI e da comissão de estudos sobre cabeamento estruturado da ABNT/COBEI, certificado pela BICSI (RCDD, DCDC e NTS), Uptime Institute (ATS) e DCPro (Data Center Specialist – Design). Instrutor autorizado para cursos selecionados da DCProfessional, Fluke Networks, Panduit e Clarity Treinamentos. Assessor para o selo de eficiência para data centers – CEEDA.

Nova parceria com a Fluke Networks

Em continuação à parceria de dez anos com a Fluke Networks para a condução do curso CCTT oficial no Brasil, agora a Clarity Treinamentos se une também à Oráculo EAD para uma inovadora e desafiadora missão: elaborar e ministrar cursos de certificação online para todas suas outras ferramentas!

O primeiro curso fruto dessa parceria é o treinamento oficial para o equipamento IntelliTone Pro 200, totalmente em português. Ele é composto por 14 videoaulas, entre aulas teóricas e demonstrações práticas de todas as suas funções. Ao final, o aluno deve fazer uma prova com sete questões, sorteadas de uma base contendo diversas perguntas (a quantidade exata é confidencial). Obtendo aprovação igual ou superior a 70%, receberá um certificado de conclusão, reconhecido pela própria Fluke Networks.

Se você já possui o equipamento, ou pensa em adquirir um, não perca tempo e conheça todas as suas funcionalidades. Acesse aqui a página do treinamento IntelliTone Pro 200 no site da Oráculo EAD.

Os próximos cursos que serão publicados são:

  • Gerador de tom e sonda analógicos Pro3000
  • Verificador de cabo MicroScanner2
  • CableIQ qualification tester

Se achou este post útil, compartilhe, encaminhe a alguém que também possa achá-lo útil.

Até a próxima!

Marcelo Barboza, RCDD, DCDC, NTS, ATS
Clarity Treinamentos
marcelo@claritytreinamentos.com.br

Certificação óptica tier 1

Você sabe o que é uma certificação tier 1 de um enlace de fibra óptica? Quais os testes que a compõem? Qual sua importância? Então vamos lá! Ao final do artigo, link para um vídeo meu sobre este assunto.

A certificação tier 1 é um conjunto de testes a serem realizados em um enlace de fibra óptica recém-instalado em um ambiente de rede local, compreendendo:

  • Medição da atenuação (perda) total do enlace
  • Medição do comprimento total do enlace
  • Verificação da polaridade das fibras na portas ópticas

Dentre os dois tipos de certificação padronizados (tier 1 e tier 2), o tier 1 é o mais importante, pois permite verificar se:

  • os componentes ópticos fornecidos foram fabricados de acordo com as normas
  • os serviços contratados de instalação seguiram todas as recomendações técnicas pertinentes
  • as aplicações (Ex.: Ethernet a 10 Gb/s) pretendidas são compatíveis
  • não houve inversão de fibras, o que impediria o funcionamento das aplicações

O teste da atenuação total é o mais complexo, pois envolve o procedimento de “referência óptica”, que, além de envolver determinadas técnicas e materiais, pode ser feito de três maneiras diferentes! E se você não o fizer corretamente, o resultado obtido será inválido ou, no mínimo, impreciso!

Para saber mais sobre a certificação tier 1, suas técnicas e procedimentos, conheça o curso SCE333 – Certificação óptica tier 1.

Os principais testes para links ópticos

Se achou este post útil, compartilhe, encaminhe a alguém que também possa achá-lo útil. Não deixe de se inscrever em meu canal do YouTube! Participe de meu grupo do Whatsapp e receba as novidades sobre meus artigos, vídeos e cursos. E curta minha página no Facebook!

Até a próxima!

Marcelo Barboza, RCDD, DCDC, ATS, DCS Design, Assessor CEEDA
Clarity Treinamentos
marcelo@claritytreinamentos.com.br

Sobre o autor
Marcelo Barboza, instrutor da área de cabeamento estruturado desde 2001, formado pelo Mackenzie, possui mais de 30 anos de experiência em TI, membro de comissões de estudos sobre cabeamento estruturado e data center da ABNT, certificado pela BICSI (RCDD, DCDC), Uptime Institute (ATS) e DCPro (Data Center Specialist – Design). Instrutor autorizado para cursos selecionados da DCProfessional, Fluke Networks, Panduit e Clarity Treinamentos. Assessor para o selo de eficiência para data centers – CEEDA.

Diferenças no testes em fibra óptica tier 1 e tier 2

É possível um enlace óptico testado em tier 1 (com um OLTS, conhecido popularmente apenas como “teste de power meter”) ser “aceito” pelas normas e, ao ser testado em tier 2 (com um OTDR), ser “reprovado” pelas mesmas normas?

Sim, é possível! Enquanto o teste tier 1 calcula (e compara com as normas) a perda total do enlace, o teste tier 2 mede (e também compara com as normas) as perdas individuais dos componentes do enlace óptico.

Exemplo: se um conector óptico apresentar perda 0,1 dB acima do limite da norma, mas outro conector do mesmo enlace apresentar perda 0,1 dB abaixo do limite, a perda total ainda estará dentro da norma, passando no teste tier 1. Mas, em um teste tier 2, o primeiro conector seria reprovado, enquanto o segundo seria aprovado. O resultado final do teste tier 2 será “reprovado”.

E se isso acontecer, o que devemos fazer? Em qual resultado confiar? Ambos resultados estão corretos, apenas mostram aspectos diferentes do mesmo enlace. Se tudo o que queremos é saber se a perda total está dentro das especificações do fabricante do cabeamento (para a garantia estendida) ou das aplicações que desejo usar, então o resultado tier 1 é o suficiente. Mas se queremos saber se o serviço de instalação do cabeamento foi executado com precisão, então devemos observar o teste tier 2 e pedir que o instalador melhore os itens fora dos limites.

Outra possibilidade de um teste tier 2 falhar (enquanto o tier 1 passa) é a ocorrência de excesso de “refletância” nos conectores, pois esse parâmetro não é medido no tier 1, e pode ser crítico para algumas aplicações.

Para saber mais sobre os testes ópticos tier 1, confira o curso SCE333 e os vídeos abaixo.

Se achou este post útil, compartilhe, encaminhe a alguém que também possa achá-lo útil. Não deixe de se inscrever em meu canal do YouTube! Participe de meu grupo do Whatsapp e receba as novidades sobre meus artigos, vídeos e cursos. E curta minha página no Facebook!

Até a próxima!

Marcelo Barboza, RCDD, DCDC, ATS, DCS Design, Assessor CEEDA
Clarity Treinamentos
marcelo@claritytreinamentos.com.br

Sobre o autor
Marcelo Barboza, instrutor da área de cabeamento estruturado desde 2001, formado pelo Mackenzie, possui mais de 30 anos de experiência em TI, membro de comissões de estudos sobre cabeamento estruturado e data center da ABNT, certificado pela BICSI (RCDD, DCDC), Uptime Institute (ATS) e DCPro (Data Center Specialist – Design). Instrutor autorizado para cursos selecionados da DCProfessional, Fluke Networks, Panduit e Clarity Treinamentos. Assessor para o selo de eficiência para data centers – CEEDA.

Quero rodar Ethernet a 40 Gigabits em minha fibra existente, posso?

Depende! Do quê? De qual fibra possui, primeiramente.

Se seu link for composto por fibras monomodo, você precisará de equipamentos nos padrões 40GBASE-LR4 ou 40GBASE-ER4, dependendo da distância pretendida, 10 km ou 40 km.

Mas se você possuir um link multimodo, precisará ser, no mínimo, de categoria OM3. Se for inferior, sem chances, precisará trocar de fibra. Se for OM3 ou OM4, precisará de um link com 8 fibras em um cabo tronco terminado em conectores MPO. O equipamento deverá ser do padrão 40GBASE-SR4.

Para OM3, o alcance será de 100 metros. Para OM4, de 150 metros. Mas atenção à perda óptica total de seu link! Com OM3, não deverá ser superior a 1,9 dB. Para OM4, não superior a 1,5 dB! Também há limites de perda para os links monomodo, portanto deve-se consultar as tabelas do padrão IEEE 802.3.

Para entender sobre as diferenças entre fibras multimodo e monomodo, ou para entender a classificação OMx das fibras multimodo, assista aos vídeos abaixo:

Há também opções de equipamentos proprietários, como o 40GBASE-SR-BiDi, da Cisco, que permite utilizar apenas duas fibras OM3 ou OM4. Para maiores informações, como alcance e perda máximos, consultar as tabelas da Cisco.

Para saber a perda total de seu link, deverá realizar um teste óptico Tier 1, com um equipamento do tipo OLTS (optical loss test set). Para estimar a perda total de seu link antes de fazer o teste, pode fazer o cálculo do balanço de perda óptica utilizando os valores padrões de perda. Se a instalação tiver sido bem feita, a perda medida deverá ser inferior a esse cálculo. Para saber mais sobre esse teste, confira meu vídeo abaixo:

Para saber mais sobre como realizar o cálculo do balanço de perda óptica, há o curso SCE335.

Confira também o curso sobre os padrões Ethernet sobre cabeamento estruturado, o SCE381, e o curso sobre teste óptico tier 1, o SCE333. Para saber mais sobre os padrões Ethernet sobre cabeamento estruturado, assista ao vídeo abaixo:

Se achou este post útil, compartilhe, encaminhe a alguém que também possa achá-lo útil. Não deixe de se inscrever em meu canal do YouTube! Participe de meu grupo do Whatsapp e receba as novidades sobre meus artigos, vídeos e cursos. E curta minha página no Facebook!

Até a próxima!

Marcelo Barboza, RCDD, DCDC, NTS, ATS, DCS Design, Assessor CEEDA
Clarity Treinamentos
marcelo@claritytreinamentos.com.br

Sobre o autor
Marcelo Barboza, instrutor da área de cabeamento estruturado desde 2001, formado pelo Mackenzie, possui mais de 30 anos de experiência em TI, membro da BICSI e da comissão de estudos sobre cabeamento estruturado da ABNT/COBEI, certificado pela BICSI (RCDD, DCDC e NTS), Uptime Institute (ATS) e DCPro (Data Center Specialist – Design). Instrutor autorizado para cursos selecionados da DCProfessional, Fluke Networks, Panduit e Clarity Treinamentos. Assessor para o selo de eficiência para data centers – CEEDA.