Explorando o Núcleo da Conectividade: Visita Técnica ao Data Center da Univox

Em uma iniciativa enriquecedora, Marcelo Barboza, uma autoridade em infraestrutura física de TI, com reconhecimento internacional através de títulos como RCDD, DCDC pela BICSI e ATS pelo Uptime Institute, aceitou o convite da GROZ para uma visita técnica ao data center da Univox. Esta parceria entre a Clarity Treinamentos, empresa de Marcelo, e a GROZ, destacou a importância da colaboração entre especialistas para aprimorar e divulgar conhecimentos sobre as infraestruturas que sustentam o universo digital. A Univox, com sua extensa rede de mais de 1300 quilômetros de cabos de fibra óptica, serve como um pilar para a conectividade na região sul e sudoeste de Minas Gerais, e a visita de Marcelo lançou luz sobre os bastidores dessa operação monumental.

Aprofundando-se na Origem da Internet

A jornada de descoberta de Marcelo começou com uma questão fundamental: como o sinal da internet é gerado e distribuído até chegar aos usuários finais? Ao adentrar o data center da Univox, ele desvendou a complexidade da infraestrutura necessária para essa façanha. A visita, enriquecida pela parceria com a GROZ, permitiu a Marcelo uma análise detalhada dos sistemas e processos que compõem o backbone da conectividade na era digital.

Dentro do Data Center: Uma Visão Técnica

Marcelo explorou com precisão técnica os componentes críticos do data center. Ele destacou a importância dos racks trancados e monitorados por câmeras de CFTV, uma medida de segurança essencial para proteger os equipamentos de acesso não autorizado. A presença de redes CDN de gigantes da internet, como Google, Facebook e Netflix, foi um ponto de interesse particular, demonstrando a capacidade da Univox de fornecer acesso rápido a conteúdos populares através de equipamentos dedicados que funcionam como caches locais.

Resiliência e Eficiência Energética

A visita proporcionou insights sobre a resiliência do data center contra interrupções de energia. Marcelo examinou os sistemas UPS e geradores a diesel, destacando a engenharia por trás da continuidade ininterrupta do serviço. A eficiência energética também foi um tema explorado, com Marcelo detalhando o uso de sistemas de ar-condicionado de precisão para gerenciamento térmico, essenciais para manter a operação dos equipamentos dentro de parâmetros ideais e evitar o superaquecimento.

A Importância do Monitoramento

A operação 24/7 do NOC (Network Operations Center) foi outro aspecto técnico abordado por Marcelo. Ele descreveu como o NOC serve como os olhos e ouvidos do data center, utilizando telões e estações de trabalho individuais para monitorar constantemente a saúde da rede, a integridade dos sistemas e responder prontamente a qualquer incidente.

Conclusão: A Visão de um Especialista

A visita técnica de Marcelo Barboza ao data center da Univox, a convite da GROZ e em parceria com a Clarity Treinamentos, ofereceu uma visão abrangente e detalhada do que é necessário para manter a infraestrutura digital do mundo em funcionamento. Através desta colaboração, Marcelo conseguiu não apenas explorar os aspectos técnicos do data center, mas também destacar a importância da educação e da parceria entre especialistas para avançar no campo da infraestrutura de TI. Este relato detalhado serve como uma fonte de inspiração e conhecimento para profissionais da área e entusiastas da tecnologia, reforçando a importância de uma infraestrutura robusta e confiável para o futuro digital. Assista a íntegra do vídeo, disponível logo a seguir.

A História do Ethernet: Como uma Solução de Rede da Década de 70 Moldou o Futuro da Conectividade

A evolução do Ethernet é uma jornada fascinante dentro do mundo da tecnologia de redes. Capacitando computadores a se comunicarem e conectarem em redes locais (LAN) desde sua concepção na década de 1970, o Ethernet transformou-se constantemente para atender às demandas crescentes de velocidade e eficiência. A inovação iniciou com o padrão Ethernet original, possibilitando que dispositivos trocassem informações com base numa estrutura de rede com fio simples, porém eficaz.

Com o passar do tempo, a tecnologia de cabos Ethernet evoluiu significantemente, pavimentando o caminho para o surgimento de padrões como Fast Ethernet e Gigabit Ethernet, que oferecem maiores taxas de transferência de dados. As mudanças não se limitaram apenas à infraestrutura física; adaptações foram concebidas igualmente no âmbito do software e na implementação de novos protocolos. Isso possibilitou que as redes Ethernet se mantivessem resilientes e pertinentes, até mesmo na era das tecnologias de rede experimentais e avançadas.

A relevância do Ethernet, até os dias modernos, tem sido garantida por sua capacidade de se adaptar e integrar com novas formas de tecnologia de rede, como Wi-Fi e a internet das coisas (IoT). A indústria continua a testemunhar desenvolvimentos que empurram as capacidades do Ethernet para além do que era imaginável em seu advento, ressaltando sua importância inabalável no panorama da infraestrutura de redes globais.

Principais Pontos

  • O Ethernet evoluiu para atender à crescente demanda por redes mais rápidas e eficientes.
  • Inovações em hardware e software garantiram a resiliência do padrão Ethernet.
  • O Ethernet continua sendo fundamental na infraestrutura global de redes, adaptando-se a novas tecnologias.

Qual foi o Padrão Ethernet Original?

Antes de avançar para a evolução do Ethernet e os impactos posteriores, é essencial compreender o nascimento e as características que poliram o padrão original dessa tecnologia.

O nascimento da tecnologia Ethernet

Ethernet, uma inovação oriunda do Xerox PARC (Palo Alto Research Center) na década de 1970, foi concebida como uma solução para conectar múltiplos dispositivos em uma mesma rede local. O desenvolvimento inicial pode ser atribuído a Robert Metcalfe e sua equipe, que buscavam uma forma eficiente de interligar computadores e equipamentos de impressão.

Primeiro padrão Ethernet e seu impacto nos protocolos de rede

O primeiro esboço do que viria a ser o padrão Ethernet foi solidificado em 1980, com a parceria entre Xerox, Digital Equipment Corporation e Intel, culminando no documento intitulado “The Ethernet, A Local Area Network. Data Link Layer and Physical Layer Specifications“. Esse evento introduziu ao mundo uma novidade: a capacidade de operar a 10 megabits por segundo (Mbps), um feito considerável para a época. Além disso, instaurou padrões fundamentais para os protocolos de rede, incluindo endereços de 48 bits e um campo EtherType de 16 bits, componentes vitais para o processo de comunicação em uma rede.

A marca registrada no nome Ethernet e a jornada em direção à padronização

A Xerox detinha a marca registrada para o nome Ethernet, mas a tecnologia tomou proporções relevantes que impulsionaram o processo de padronização. O IEEE (Institute of Electrical and Electronics Engineers) assumiu a liderança neste processo, codificando o Ethernet como um padrão internacional (IEEE 802.3), pavimentando o caminho para que a tecnologia Ethernet se tornasse a espinha dorsal das redes de computadores ao redor do mundo. A padronização foi decisiva para a ampla adoção do Ethernet, permitindo a interoperabilidade entre dispositivos de fabricantes distintos e solidificando sua posição como o método de rede predominante.

Como a Tecnologia de Cabos Ethernet Evoluiu?

Os cabos Ethernet são os alicerces físicos da conectividade em redes e a sua evolução reflete um avanço tecnológico significativo. Com o passar do tempo, tecnologias de cabos Ethernet passaram por grandes transformações para suportar aumento de velocidade e integração de mais serviços.

De Ethernet grosso para fino: A transformação dos cabos Ethernet

Inicialmente, o Ethernet usava um cabo coaxial grosso (10BASE5), robusto e com grandes limitações de flexibilidade e instalação. A transição para os cabos coaxiais mais finos (10BASE2) marcou a primeira grande inovação, permitindo instalações mais fáceis e reduzindo custos. A evolução continuou com a adoção do par trançado (10BASE-T), tornando-se o meio físico mais comum para comunicação Ethernet nos ambientes de rede atuais.

10BASE-2
10BASE-5

O papel do cabo de fibra óptica e do par trançado na evolução do Ethernet

A fibra óptica trouxe a possibilidade de conexões de alta velocidade e longa distância, livre de interferências eletromagnéticas. Por outro lado, o par trançado reforçou a flexibilidade e a facilidade de uso. Padrões como IEEE 802.3 incluíram estas tecnologias para expandir as capacidades de comunicação e conectividade das redes.

Power over Ethernet (PoE): Unindo energia e conectividade de rede

O Power over Ethernet (PoE) é uma inovação importante que permite a transmissão de energia elétrica, juntamente com os dados, pelo mesmo cabo de rede. PoE facilita a instalação de dispositivos como câmeras de segurança e telefones IP, pois não necessitam de uma fonte de alimentação separada. Este avanço simplificou as infraestruturas de rede e expandiu as possibilidades de instalação e distribuição de dispositivos.

O Impacto da Evolução do Ethernet em Redes de Computadores e Redes Locais

Com o advento do gigabit ethernet e fast ethernet, redes de computadores locais testemunharam uma transformação significativa. Essa evolução não apenas acelerou a transferência de dados, como também solidificou a estrutura de conectividade nas redes modernas.

Como Gigabit e Fast Ethernet redefiniram redes locais de computadores

O Gigabit Ethernet e o Fast Ethernet redefiniram o desempenho em redes locais de computadores (LANs) ao aumentar a velocidade da transferência de dados em até dez vezes em comparação com o Ethernet original. Isso significou uma melhora substancial na capacidade das LANs de lidar com volumes elevados de tráfego e transferir dados de maneira eficiente, suportando desta forma um melhor desempenho de aplicações críticas para os negócios.

A expansão das redes de área local (LANs) por meio de tecnologias Ethernet

Com a implementação do protocolo de rede Ethernet, além do TCP e dos protocolos de internet IPv4 e IPv6, as LANs se expandiram para além de ambientes empresariais, chegando aos lares e ao uso cotidiano. A flexibilidade oferecida pelo Ethernet permitiu que ele se adaptasse a uma ampla gama de estruturas de rede e se tornasse um elemento-chave na interconexão de dispositivos.

De Ethernet experimental a convencional: Como o Ethernet se tornou a espinha dorsal das redes de área local

Desde suas versões experimentais até o status atual como padrão de facto, o Ethernet se estabeleceu como a espinha dorsal das tecnologias de LAN. Com o suporte constante dos padrões IEEE 802.3™, ele se converteu no método mais confiável e amplamente utilizado para conectar computadores a uma rede, habilitando um diálogo coerente entre diferentes dispositivos e plataformas de hardware.

Como os Switches de Ethernet e as Tecnologias de Rede se Adaptaram?

Com a constante evolução da tecnologia de rede, os switches de Ethernet tiveram que se adaptar para atender às demandas crescentes de rapidez e eficiência. Eles se tornaram peças-chave em modernas topologias de rede, permitindo a comunicação e o intercâmbio de dados entre dispositivos com sofisticação e precisão.

A revolução do design e funcionalidade dos switches Ethernet

Os switches de Ethernet expandiram significativamente suas funcionalidades, migrando de simples hubs que propagavam dados para todos os dispositivos da rede para sistemas inteligentes capazes de direcionar esse tráfego de maneira eficaz. Implementações conforme padrões do IEEE possibilitaram a autonegociação e o ajuste do desempenho. Com isso, eliminou-se a necessidade de intervenção manual para configurar velocidade e modo de operação, aprimorando a interoperabilidade entre diferentes dispositivos de rede.

Integração do Ethernet em tecnologias de rede modernas

Os switches de Ethernet se tornaram um componente central em tecnologias modernas de rede, capazes de se integrar a routers e bridges em arquiteturas complexas. Eles operam colaborativamente para gerenciar o tráfego de rede, aplicar políticas de segurança e permitir a comunicação entre diferentes segmentos da rede. Essa integração proporcionou um avanço fundamental na gestão e operação das redes modernas, garantindo consistência e confiabilidade.

Full-duplex Ethernet: Atingindo taxas de transferência de dados mais altas e eficiência

O modo full-duplex foi um salto importante no design das redes Ethernet, permitindo que os dispositivos transmitam e recebam dados simultaneamente. Isso resultou em uma utilização mais eficaz da largura de banda e uma melhoria drástica na taxa de transferência de dados. Com o aperfeiçoamento do full-duplex, os switches podem agora proporcionar canais de comunicação mais fluidos e sem colisões, otimizando a eficiência das redes empresariais modernas.

O Futuro do Ethernet: de Fast Ethernet a Gigabit e além

Padrões Ethernet emergentes e a busca por transferências de dados mais rápidas

Os padrões Ethernet têm evoluído rapidamente no cenário tecnológico para atender à demanda por transferências de dados de alta velocidade. Adaptando-se à nova era digital, os padrões emergentes como o 2.5 e 5G BASE-T buscam otimizar a eficiência de redes atuais sem a necessidade de cabeamento totalmente novo, proporcionando uma solução viável para empresas que necessitam de uma infraestrutura de rede atualizada e eficiente.

Taxas de transferência de dados Ethernet: O que o futuro reserva

A taxa de transferência de dados é um elemento crítico para sistemas Ethernet, e com o passar do tempo, tem-se observado um aumento substancial na mesma. Projeta-se que padrões futuros, como o Ethernet de 10G, 40G e além, impulsionarão as redes não só em termos de velocidade, mas também em confiabilidade e segurança. Isso se alinha perfeitamente com a integração do 5G, que promete revolucionar a comunicação móvel e fixa.

Novas tecnologias Ethernet e suas implicações em redes futuras

O Ethernet tem a responsabilidade de se manter relevante no contexto de comunicações confiáveis com a crescente adoção de conexões sem fio e móveis. Tecnologias Ethernet inovadoras, com maior capacidade de escalabilidade, estão sendo projetadas para facilitar uma transição suave para as demandas futuras da Internet das Coisas (IoT), assim como para apoiar a crescente onda de dispositivos conectados que exigem uma infraestrutura de rede sólida e confiável.

Ethernet na Era de Tecnologias de Rede Experimentais e Novas

A Ethernet tem sido um fator chave ao longo da história das redes, ajustando-se e evoluindo para sustentar as inovações tecnológicas que continuaram a transformar a comunicação de dados em distâncias vastas e em aplicações como a Internet das Coisas (IoT).

O papel do Ethernet no desenvolvimento de novos protocolos e arquiteturas de rede

O Ethernet, desde a sua criação, serviu como uma fundação para o desenvolvimento de novos protocolos de rede. Sua flexibilidade e adaptabilidade têm possibilitado a expansão de arquiteturas de rede e a integração com novas tecnologias, garantindo compatibilidade e interoperabilidade. À medida em que a World Wide Web se expandia, a demanda por uma infraestrutura de rede mais robusta e eficiente crescia, e o Ethernet continuava a evoluir para cumprir esses requisitos.

Como o Ethernet tem sido constantemente reinventado para atender às necessidades modernas

A necessidade de velocidades mais altas e latência mais baixas levou a constantes atualizações nos padrões Ethernet. As tecnologias de hardware evoluíram, desde o uso de cabos coaxiais até os atuais sistemas de fibra óptica, suportando assim a transmissão de dados em escalas antes inimagináveis. As implementações de Ethernet têm acompanhado o ritmo do avanço tecnológico, como é evidenciado pelo suporte crescente ao Internet of Things, que exige uma rede confiável e de baixa latência.

Olhando para frente: A evolução contínua do Ethernet e sua influência em tecnologias de rede futuras

Olhando para o futuro, o Ethernet está posicionado para continuar a impulsionar inovações em tecnologias de rede. Novos padrões que estão atualmente em fase experimental prometem expandir ainda mais a capacidade, eficiência e alcance da Ethernet. À medida em que mais dispositivos se conectam à internet e a demanda por conectividade de internet de alta velocidade e baixa latência cresce, o Ethernet será fundamental para fornecer a espinha dorsal necessária para suportar esse crescimento contínuo e a evolução da rede mundial.

Perguntas Frequentes

Nesta seção, exploramos as questões mais comuns relacionadas à evolução do Ethernet, abordando desde sua origem até seu papel nas tecnologias de rede atuais.

Como o Ethernet evoluiu ao longo do tempo?

O Ethernet surgiu no início da década de 1970 no Xerox PARC e, com o passar do tempo, passou por várias atualizações e aprimoramentos. As mudanças incluíram notáveis aumentos na velocidade e capacidade, bem como na introdução de novas tecnologias, como Power over Ethernet.

Quais são as principais diferenças entre as gerações do Ethernet?

As principais diferenças entre as gerações do Ethernet podem ser vistas nas taxas de transferência de dados, desde 10 Mbps do Ethernet original até mais de 100 Gbps em versões recentes. Além disso, variações no método de sinalização e no meio físico, com a introdução de fibras ópticas e cabos de par trançado mais avançados, marcam o progresso entre as gerações.

Qual foi a primeira versão do protocolo Ethernet e sua importância?

A primeira versão do protocolo Ethernet foi criada pela Xerox PARC na década de 1970, marcando um avanço significativo ao facilitar a comunicação entre diferentes dispositivos em uma mesma rede local. Sua importância se deve ao estabelecimento de um padrão para redes locais que se tornaria fundamental para o desenvolvimento da computação em rede.

Como o Ethernet se compara com outras tecnologias de rede, como a internet?

O Ethernet é uma das tecnologias fundamentais para redes locais (LAN), enquanto a internet é uma rede de alcance global. A tecnologia Ethernet permite a comunicação eficaz e a transferência de dados dentro de redes confinadas, sendo complementar à internet que liga redes separadas geograficamente em todo o mundo.

Quais avanços no protocolo Ethernet foram essenciais para as redes modernas?

Avanços como o aumento exponencial das velocidades de transmissão, a introdução do protocolo spanning tree e o suporte para diferentes meios de transmissão formam a espinha dorsal das redes modernas. A adaptabilidade e a escalabilidade do Ethernet permitem que ele continue sendo uma peça-chave na infraestrutura de rede atual.

Qual é a relevância do cabo Cat 5e na história do Ethernet?

O cabo Categoria 5e (Cat 5e) é emblemático por fornecer desempenho aprimorado em comparação com seu antecessor, o Cat 5, suportando velocidades de até 1 Gbps. Ele é uma das opções de cabos mais utilizadas em novas instalações de rede Ethernet devido ao seu custo-benefício e confiabilidade.

Balanço de potência óptica

Escrevi em outros artigos sobre o balanço de perda óptica e seu cálculo. Mas existe um conceito muito parecido, que acaba causando confusão com o anterior, que é o do “balanço de potência óptica”. Neste artigo, vamos falar sobre ele, e como ele se diferencia do balanço de perda.

Ao final do artigo, links para vídeos meus sobre este assunto.

Só para recordar, o “balanço de perda óptica” é um cálculo realizado para estimar qual será a atenuação total de um enlace em fibra óptica antes mesmo de ser instalado. Já o “balanço de potência óptica” é um cálculo realizado para se conhecer a quantidade mínima e máxima de potência que poderá (ou deverá) ser perdida durante a transmissão.

O balanço de perda é específico para os tipos de equipamentos de transmissão e recepção (transceivers) que serão utilizados. Portanto, para realizar esse cálculo é absolutamente necessário saber quais os modelos exatos dos transceivers que serão empregados em determinada instalação.

As características dos equipamentos que precisam ser conhecidas são:

  • Potência do transmissor
  • Sensibilidade do receptor
  • Faixa dinâmica do receptor

Esses valores são tipicamente expressos em “dBm”. O dBm é uma unidade de medida que expressa a potência absoluta mediante uma relação logarítmica (em decibéis) com base em 1 mW. Ou seja, 0 dBm equivale a 1 mW. Como exemplo, 30 dBm representa uma potência 30 dB superior a 1 mW, ou seja, 1.000 mW, ou 1 W. Em mais um exemplo, -10 dBm representa uma potência 10 dB inferior a 1 mW, ou seja, 0,1 mW, ou 100 µW.

O cálculo do balanço de potência é simples: subtraímos a sensibilidade do receptor da potência do transmissor para saber o quanto de potência podemos perder durante a transmissão sem que haja uma diminuição significativa na sua qualidade (expressa pela “taxa de erro de bit”, ou BER).

Exemplos:

  • Equipamento com potência de transmissão de 10 dBm e sensibilidade do receptor de 2 dBm.
    Balanço de potência = 10 dBm – 2 dBm = 8 dB.
    Ou seja, o canal passivo de transmissão (enlace óptico completo) pode apresentar atenuação de até 8 dB sem que haja degradação de qualidade
  • Equipamento com potência de transmissão de -5 dBm e sensibilidade do receptor de -20 dBm.
    Balanço de potência = -5 dBm – (- 20 dBm) = 15 dB.
    Ou seja, o canal passivo de transmissão (enlace óptico completo) pode apresentar atenuação de até 15 dB sem que haja degradação de qualidade.

Mas não devemos nos esquecer da faixa dinâmica do receptor. Ela nos informa os valores mínimos e máximos de potência que devem ser recebidos para que o equipamento interprete os sinais recebidos corretamente.

Se um receptor possui sensibilidade de -20 dBm e faixa dinâmica de 15 dB, isso significa que ele aceita sinais com potência entre -20 dBm e -5 dBm (ou seja, -20 + 15). Se ele receber um sinal com potência superior a -5 dBm, também haverá degradação na qualidade, e poderá ocorrer até mesmo a queima do receptor. Por exemplo, se a potência do transmissor for de -2 dBm, além de saber que a atenuação máxima deve ser inferior a 18 dB (-2 – (-20)), também saberemos que a atenuação mínima do canal deverá ser de 3 dB (-2 -(-5))! Se o enlace óptico não possuir atenuação igual ou maior que 3 dB, também haverá degradação da qualidade da transmissão, com aumento do BER.

Se quiser entender melhor sobre db e dBm antes de continuar a ler o artigo, assista esse vídeo:

Entenda dB e dBm

Isso ocorre com frequência em equipamentos de transmissão de longa distância, que possuem alta potência de transmissão e ata sensibilidade do receptor, pois devem contar com enlaces de diversos quilômetros de fibra óptica, com diversas emendas. Nesses casos, quando queremos testar os equipamentos em uma bancada, e vamos conectá-los apenas com um patch cord, corremos o risco de até queimar o receptor, tamanha será a potência recebida. Para isso, devemos usar atenuadores, dispositivos que introduzem uma perda proposital no enlace a fim de não “inundar” o receptor com uma potência que esteja fora de sua faixa dinâmica.

Como vimos, o resultado do balanço de potência nos dá a atenuação máxima que o canal óptico passivo pode apresentar para que o equipamento de rede funcione a contento. E é agora que entra o outro cálculo, o do “balanço de perda óptica” que vimos nos outros artigos. Sabendo do balanço de potência, temos que projetar um enlace que apresente um balanço de perda inferior ao balanço de potência do equipamento.

Ao utilizar o valor do balanço de perda, não devemos deixar de incluir previsões para manutenções futura, além de uma margem de segurança.

Exemplos:

  • Enlace composto por 20 km de fibra monomodo OS2 terminada em ambas as extremidades dentro de distribuidores ópticos (DIO) através da fusão de pigtails, cujos conectores serão acoplados na parte interna dos adaptadores frontais do DIO; haverá uma fusão no meio da rota; prever duas fusões para manutenção futura. Equipamento com potência de transmissão de 10 dBm e sensibilidade do receptor de -5 dBm:
    1. Perda da fibra óptica: 20 km X 0,4 dB/km = 8,0 dB
    2. Perda das conexões: 2 X 0,75 dB = 1,5 dB
    3. Perda das emendas: 3 X 0,3 dB = 0,9 dB
    4. Previsão de perda das possíveis emendas futuras: 2 X 0,3 dB = 0,6 dB
    5. Margem de segurança: 1 dB
    6. Balanço da perda (1310 nm e 1550 nm): 8,0 + 1,5 + 0,9 + 0,6 + 1,0 = 12,0 dB
    7. Balanço da potência: 10 – (-5) = 15 dB
    8. Conclusão: projeto correto, pois ainda há uma margem de 3 dB (15 – 12) entre o balanço da potência e as perdas projetadas do enlace óptico.
  • Enlace composto por 30 km de fibra monomodo OS2 terminada em ambas as extremidades dentro de distribuidores ópticos (DIO) através da fusão de pigtails, cujos conectores serão acoplados na parte interna dos adaptadores frontais do DIO; haverá duas fusões no meio da rota; prever duas fusões para manutenção futura. Equipamento com potência de transmissão de 5 dBm e sensibilidade do receptor de -10 dBm:
    1. Perda da fibra óptica: 30 km X 0,4 dB/km = 12,0 dB
    2. Perda das conexões: 2 X 0,75 dB = 1,5 dB
    3. Perda das emendas: 4 X 0,3 dB = 1,2 dB
    4. Previsão de perda das possíveis emendas futuras: 2 X 0,3 dB = 0,6 dB
    5. Margem de segurança: 1 dB
    6. Balanço da perda (1310 nm e 1550 nm): 12,0 + 1,5 + 1,2 + 0,6 + 1,0 = 16,3 dB
    7. Balanço da potência: 5 – (-10) = 15 dB
    8. Conclusão: projeto incorreto, o enlace óptico projetado pode apresentar perda acima do tolerado pelo equipamento previsto.

Equipamentos de rede Ethernet já possuem tabelas que mostram o balanço da perda alocada para o enlace óptico, assim não precisamos realizar esse cálculo, basta consultar as tabelas publicadas no padrão IEEE 802.3. Como exemplo, a tabela abaixo mostra a perda máxima alocada para o canal óptico para os padrões Ethernet sobre fibra óptica entre as velocidades de 10 Mb/s e 1 Gb/s:

Padrão FibraComprimento de onda (nm) Perda máx. do canal (dB)
10BASE-FL OM1 850 12,5
100BASE-FXOM1 1300 11
1000BASE-SX OM2 850 3,56
1000BASE-LX OM2 1310 2,35
1000BASE-LX SM 1310 4,57
Tabela: Requisitos para alguns padrões de rede Ethernet


Saiba mais sobre o balanço de perda óptica no curso SCE335, e sobre os padrões Ethernet no curso SCE381. Ao final de cada curso, você poderá baixar materiais de referência, realizar avaliações e, se for bem nelas, ainda receberá certificados de conclusão!

Complemente o conhecimento com meus vídeos abaixo, sobre o cálculo do balanço de perda e potência óptica:

Orçamento de potência óptica
Cálculo do balanço ou orçamento de perda óptica (optical loss budget)

Se achou este post útil, compartilhe, encaminhe a alguém que também possa achá-lo útil. Não deixe de se inscrever em meu canal do YouTube! Participe de meu grupo do Whatsapp e receba as novidades sobre meus artigos, vídeos e cursos. E curta minha página no Facebook!

Até a próxima!

Marcelo Barboza, RCDD, DCDC, ATS, DCS Design, Assessor CEEDA
Clarity Treinamentos
marcelo@claritytreinamentos.com.br

Sobre o autor
Marcelo Barboza, instrutor da área de cabeamento estruturado desde 2001, formado pelo Mackenzie, possui mais de 30 anos de experiência em TI, membro da BICSI e da comissão de estudos sobre cabeamento estruturado da ABNT/COBEI, certificado pela BICSI (RCDD, DCDC), Uptime Institute (ATS) e DCPro (Data Center Specialist – Design). Instrutor autorizado para cursos selecionados da DCProfessional, Fluke Networks, Panduit e Clarity Treinamentos. Assessor para o selo de eficiência para data centers – CEEDA.

Cálculo do balanço de perda óptica

Em 04/abr/2017, escrevi um artigo sobre o “balanço de perda óptica” (https://www.claritytreinamentos.com.br/2017/04/04/balanco-de-perda-optica/), onde conceituo o que ele é e para que serve. Neste artigo, vamos abordar a sua forma de cálculo. Veja também este vídeo, sobre esse cálculo:

Cálculo do balanço de perda óptica

Para recordar, o “balanço de perda óptica” é um cálculo realizado para estimar qual será a atenuação total de um enlace em fibra óptica antes mesmo de ser instalado. Dentre suas finalidades, podemos ressaltar duas:

  • Verificar se o enlace óptico sendo projetado atenderá aos requisitos das aplicações que nele rodarão. Se o cálculo do balanço for superior à margem de perda alocada para o cabeamento da aplicação pretendida (ex.: 10GBASE-SR), o link poderá apresentar perda de dados e até mesmo nem “subir”;
  • Estabelecer um limite que será utilizado durante os testes de aceitação do enlace instalado. Ao testar o link com um PMLS (power meter + light source), se a atenuação medida for superior ao balanço de perda do projeto, então saberemos que algo falhou na execução: o material e/ou a mão-de-obra envolvidos.

Mas, como calcular o balanço de perda óptica? Primeiramente, temos que saber exatamente quais os componentes ópticos que serão utilizados no enlace, de preferência com marca e modelo. Componentes usuais:

  • Fibra óptica
  • Conectores
  • Emendas
  • Splitters
  • Outros componentes passivos (como taps e atenuadores, por exemplo)

Em seguida, devemos determinar a perda (atenuação) que cada um desses componentes apresentará ao ser instalado no enlace. Essa informação pode ser obtida nos folhetos de especificações técnicas dos componentes escolhidos. Atenção: a atenuação poderá ser diferente dependendo do comprimento de onda de luz utilizado.

O cálculo deve ser realizado em todos os comprimentos de onda previstos a serem utilizados no enlace em questão. No mínimo, testar:

  • Fibras multimodo nos comprimentos de onda 850 nm e 1300 nm;
  • Fibras monomodo nos comprimentos de onda 1310 nm e 1550 nm.

Se as marcas e modelos dos componentes não forem ainda conhecidos, utilizar valores padrões de mercado e/ou especificados pelas normas nacionais/internacionais correspondentes.

Exemplos de valores de atenuação padrões estabelecidos pela norma ISO/IEC 11801-1:2017, e que possivelmente estarão na próxima revisão da norma nacional ABNT/NBR 14565:

  • Par de conectores acoplados: 0,75 dB
  • Emenda: 0,3 dB
  • Fibra MM, OM1 a OM4: 3,5 dB/km (850 nm) e 1,5 dB/km (1300 nm)
  • Fibra MM, OM5: 3,0 dB/km (850 nm) e 1,5 dB/km (1300 nm)
  • Fibra SM, OS1 e OS1a: 1,0 dB/km (1310 nm e 1550 nm)
  • Fibra SM, OS2: 0,4 dB/km (1310 nm e 1550 nm)

Precisamos saber também o comprimento total do enlace final, em quilômetros. Pois a perda do componente “fibra óptica” será proporcional ao seu comprimento (por isso a perda é dada em “dB/km”, como visto acima).

Com base nessas informações, somamos todos os valores para o enlace para a obtenção do balanço de perda, em decibéis (dB).

Exemplos:

1 – Enlace composto por 3.000 m de fibra monomodo OS2 terminada em ambas as extremidades dentro de distribuidores ópticos (DIO) através da fusão de pigtails, cujos conectores serão acoplados na parte interna dos adaptadores frontais do DIO; haverá uma fusão no meio da rota

Perda da fibra óptica: 3 km X 0,4 dB/km = 1,2 dB
Perda das conexões: 2 X 0,75 dB = 1,5 dB
Perda das emendas: 3 X 0,3 dB = 0,9 dB
Balanço da perda (1310 nm e 1550 nm): 1,2 + 1,5 + 0,9 = 3,6 dB

2 – Enlace composto por 200 m de fibra multimodo OM3 terminada em ambas as extremidades dentro de distribuidores ópticos (DIO) através da terminação direta em conectores (processo de cola e polimento), e eles serão acoplados na parte interna dos adaptadores frontais do DIO

Perda da fibra óptica a 850 nm: 0,2 km X 3,5 dB/km = 0,7 dB
Perda da fibra óptica a 1300 nm: 0,2 km X 1,5 dB/km = 0,3 dB
Perda das conexões: 2 X 0,75 dB = 1,5 dB
Balanço da perda a 850 nm: 0,7 + 1,5 = 2,2 dB
Balanço da perda a 1300 nm: 0,3 + 1,5 = 1,8 dB

Os valores obtidos, como já mencionado, deverão ser comparados às especificações das aplicações e aos valores medidos durante a certificação do enlace instalado.

Se o valor medido for superior ao balanço de perda calculado, verifique o material instalado, a rota da fibra, a limpeza das conexões e a qualidade das emendas. Se for o caso, utilize um OTDR para encontrar os locais que apresentam perdas acima do esperado.

Aqui neste webiste eu disponibilizei uma ferramenta online totalmente gratuita para você calcular o balanço de perda de um link óptico. Acesse a ferramenta clicando aqui!

O vídeo abaixo ensina você a fazer uma planilha Excel para o cálculo do balanço de perda de acordo com os valores recomendados na norma nacional NBR 14565:2019:

Saiba mais sobre o balanço de perda óptica no curso rápido online SCE335, e sobre os testes com PMLS no curso rápido online SCE333. Ao final de cada curso, você poderá baixar materiais de referência, realizar avaliações e, se for bem nelas, ainda receberá certificados de conclusão!

Complemente o conhecimento com este meu vídeo sobre orçamento de potência óptica:

Orçamento de potência óptica

Se achou este post útil, compartilhe, encaminhe a alguém que também possa achá-lo útil. Não deixe de se inscrever em meu canal do YouTube! Participe de meu grupo do Whatsapp e receba as novidades sobre meus artigos, vídeos e cursos. E curta minha página no Facebook!

Até a próxima!

Marcelo Barboza, RCDD, DCDC, NTS, ATS, DCS Design, Assessor CEEDA
Clarity Treinamentos
marcelo@claritytreinamentos.com.br

Sobre o autor
Marcelo Barboza, instrutor da área de cabeamento estruturado desde 2001, formado pelo Mackenzie, possui mais de 30 anos de experiência em TI, membro da BICSI e da comissão de estudos sobre cabeamento estruturado da ABNT/COBEI, certificado pela BICSI (RCDD, DCDC e NTS), Uptime Institute (ATS) e DCPro (Data Center Specialist – Design). Instrutor autorizado para cursos selecionados da DCProfessional, Fluke Networks, Panduit e Clarity Treinamentos. Assessor para o selo de eficiência para data centers – CEEDA.